• Title/Summary/Keyword: Reforming chamber

Search Result 12, Processing Time 0.016 seconds

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

Refining of Vacuum Residues by Aquathermolysis Reaction (Aquathermolysis 반응에 의한 감압잔사유의 개질)

  • Ko, Jin Young;Park, Dong Ho;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.467-472
    • /
    • 2017
  • In this study, the reforming reaction of vacuum residue (VR) was carried out using aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. This tendency became more evident when the amount of steam used was excessive than the amount of VR. When the aquathermolysis reaction was performed at $300^{\circ}C$ and 30 bar for 48 h, the VR composition was changed from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to final state (S/A/R/A = 6.8%/57%/12.2%/24.0%), and the contents of the resins decreased by 13% and the aromatic compounds increased by 13%. The viscosity decreased from 880,000 cp to 290,000 cp by 68%. When 10% of decalin, which is easy to provide hydrogen, was added, the viscosity decreased by 68% in 24 h. The VR composition showed a reduction in the contents of resins and asphaltenes from 49% to 17% from the initial state (S/A/R/A = 7.3%/43.7%/25.6%/23.5%) to the final state (S/A/R/A = 4.5%/63.5%/12.5%/20.0%), and the content of aromatics was maximized to 63.5%. The gas layer formed by the aquathermolysis reaction in the reactor chamber was collected and analyzed by GC-MS spectroscopy. As a result, various hydrocarbon compounds such as ethylbenzene, octane and dimethylbenzene were detected.