• 제목/요약/키워드: Reforming

검색결과 968건 처리시간 0.029초

수소생산을 위한 자열개질기 작동조건의 수치해석 연구 (Numerical study on operating parameters of autothermal reformer for hydrogen production)

  • 박준근;이신구;임성광;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.507-510
    • /
    • 2008
  • Characteristics of an autothermal reformer at various operating parameters have been studied in this paper. Numerical method has been used, and simulation model has been developed for the analysis. Full Combustion reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction, and Direct Steam Reforming(DSR) reaction are assumed as dominant chemical reactions in the autothermal reformer. Simulation results are compared with experimental results for code validation. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio(OCR), Steam to Carbon Ratio(SCR), and Gas Hourly Space Veolcity(GHSV). SR reaction rate decreases with low inlet temperature. If OCR is increased, $H_2$ yield is increased but optimal point is suggested. WGS reaction is activated with high SCR. When GHSV is increased, reforming efficiency is increased but pressure drop may decrease the system efficiency.

  • PDF

MCFC용 개질기 및 프리컨버터의 수치연구 (NUMERICAL STUDY OF STREAM REFORMER AND PRECONVERTER FOR MCFC)

  • 변도현;손창현
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, various operating parameters of stream reforming process from methane in stream reformer and preconverter for MCFC is studied by numerical method. Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). The hydrogen production is tested with different wall temperature and different reactor shapes. The calculated results of the concentration of hydrogen in stream reformer are very well consistent with experimental results. This numerical study gives the design reactor wall temperature condition and size of reactor to satisfy the required fuel conversion.

수치해석을 이용한 수증기 개질 반응기의 다양한 경계조건 및 형상의 영향 (Effect of various boundary conditions and geometries in steam reformer using numerical analysis)

  • 박준근;이신구;임성광;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.41-44
    • /
    • 2007
  • Steam reforming reaction of natural gas is an important process for fuelcell commercialization. In this paper, steam reforming reaction is studied by numerical method. Pseudo-homogeneous model is incorporated for chemical reactions and one medium approach is used to take into account thermally equilibrium phenomena between catalyst and bulk gas. The model is validated with our experimental results under the same operating conditions. Because performance of reformer has relation to heat flux from wall, heat flux profiles was investigated by using Nusselt number. Value of Nusselt number in steam reformer is larger than one in channel, which does not have chemical reaction because steam reforming reaction is an endothermic reaction. When the difference of Nusselt number at the front and the rear is larger, performance is improved.

  • PDF

수소 생산을 위한 수증기 개질기의 형상 변화와 작동 조건에 대한 수치해석 연구 (Numerical Study on Geometries and Operating Parameters of a Steam Reformer for Hydrogen Production)

  • 변강수;이재성;김호영
    • 한국연소학회지
    • /
    • 제16권3호
    • /
    • pp.1-11
    • /
    • 2011
  • The main objective of this paper is to investigate characteristic of steam reformer at various geometries and operating conditions. In this paper, the steam reforming is studied by a numerical method and three dimensional simulations were used for effective analytical study. User - Defined Function (UDF) was used to simultaneously calculate reforming and combustion reaction. And the numerical model is validated with experimental results at the same operating conditions. In order to understand the relationship between operating conditions such as gas hourly space velocity(GHSV), mass flow rate of combustor inlet, various numerical investigations are carries out for various geometries. Numerical results show that cylindrical geometry is more effective than rectangular geometry for heat transfer to reactors and reforming efficiency. As mass flow rate of combustor inlet increase, reaction occurs more faster and temperature increase with each geometry. On the other hand, reaction and hydrogen conversion decrease as mass flow rate of reactor decreases.

천연가스의 수증기 개질에 의한 수소 제조 기술 특허동향 (Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas)

  • 서동주;윤왕래;강경석;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.464-480
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photochemical method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studied for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by steam reforming of natural gas were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2006. Patents were gathered by using key-words searching and extracted by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성 (Operating Characteristics of MCFC System on the Diversification of Fuel)

  • 임석연;성용욱;한재영;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.156-163
    • /
    • 2015
  • The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구 (A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming)

  • 최종균;남진현;신동훈;정태용;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

MCFC 프리컨버터 촉매의 열전도특성과 연료전환율 해석 (NUMERICAL STUDY OF HEAT TRANSFER AND FUEL CONVERSION FOR MCFC'S PRECONVERTER)

  • 변도현;손창현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.112-116
    • /
    • 2011
  • In this paper, a preconverter of MCFC for an emergence electric power supplier is numerically simulated to increase the hydrogen production from natural gas (methane). Commercial code is used to simulated the porous catalyst with user subroutine to model three dominant chemical reactions which are Stream Reforming(SR), Water-Gas Shift(WGS), and Direct Stram Reforming(DSR). To get 10% fuel conversion rate in preconverter. the required external heat flux is supplied from outer wall of preconverter. The calculated results show that very nonuniform temperature distribution and chemical reaction happen near the wall of preconverter. These phenomena can be explained by the low heat conductivity of porous catalyst and the endothermic reforming reaction.

  • PDF

회전 아크를 이용한 메탄 개질 반응에서 플라즈마 모드에 따른 개질 특성 (Characteristics of $CH_4$ Reforming by Rotating Arc)

  • 김동현;이대훈;김관태;송영훈
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.15-21
    • /
    • 2006
  • Characteristics of a plasma reactor for partial oxidation of methane, especially focused on the role and effectiveness of plasma chemistry, are investigated. Partial oxidation of methane is investigated using a rotating arc which is a three dimensional version of a typical gliding arc. Three different modes of operation were found. Each mode shows different reforming performance. The reason for the difference is due to the difference in relative role of thermal and plasma chemistry in overall process. A mode with high temperature results higher methane conversion and hydrogen selectivity in contrast to the mode with lower temperature where poor methane conversion and higher selectivity of $C_2$ species are observed. In this way, we can confirm that by controlling characteristic of process or controlling relative strength of plasma chemistry and thermal chemistry, it is possible to map an optimal condition of reforming process by rotating arc.

  • PDF

수증기 개질 반응기 내의 열 및 물질전달 특성에 관한 연구 (Heat and mass transfer characteristics in steam reforming reactor)

  • 이신구;임성광;배중면
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.56-63
    • /
    • 2006
  • In this paper, heat and mass transfer characteristics through experimental and numerical study are extensively investigated in steam reforming reactor under given operating conditions. In order to get simulated data at outlet of the reformer, heterogeneous reactor model is incorporated. As the reaction also takes place in porous media, two medium approach is used to take into account thermally non-equilibrium phenomena between catalyst and bulk gas. From various parametric studies, significance of heat transfer is emphasized in steam reforming reaction.

  • PDF