• Title/Summary/Keyword: Reflector Mirror Design

Search Result 19, Processing Time 0.022 seconds

Design of a Reflector Mirror for Infrared Camera in the High Magnetic Field of Power System (고자장 수·변전 설비에서의 적외선 카메라용 반사경 설계)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.255-260
    • /
    • 2014
  • Recently infrared cameras have been widely used to diagnosis degradation status of the power substitution system. At the place of high magnetic field, however, electronic parts of infrared camera take a place problem that is not reasonable working due to high magnetic field. To solve this problem, we may generally use reflector, it has a problem that the performance of reflection degrade caused by flexure of the reflector. In this paper, in order to overcome these problem, technique of design for reflector is proposed to reduce error and to increase measurement efficiency. The reflector is made by coating using aluminum on the acrylic sheet.

Design and Analysis of U-shaped Sampled Grating Distributed Bragg Reflector Lasers (U형 Sampled Grating DBR 레이저 다이오드의 설계 및 분석)

  • Kim, Kyoungrae;Chung, Youngchul
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.229-235
    • /
    • 2017
  • A widely tunable U-shaped SGDBR (Sampled Grating Distributed Bragg Reflector) laser diode is designed and analyzed by means of a time-domain simulation. The U-shaped SGDBR laser diode consists of SGDBR, active, phase, and TIR (Total Internal Reflection) mirror sections, so the coupling losses across the sections should be carefully considered. The tuning range of the designed U-shaped SGDBR laser is about 1525-1570 nm, which is confirmed by the simulation. The simulation results show that the loss in the TIR mirror region should be less than about 2 dB, and the refractive-index difference at the butt coupling between the passive and active regions should be less than 0.1, to provide the complete tuning range.

Structural Analysis of High Precision Reflector Using Finite Element Analysis (유한요소해석법을 이용한 고정밀 반사경의 구조 해석)

  • Lee, Sang-Yong;Kim, Ghiseok;Kim, Geon-Hee;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2013
  • In this paper, the effect of bolt clamping force and form accuray of contact surface between mirror and mount on mirror surface was studied. Normally, mirror used in reflecting optical system was assembled with mount by bolts or adhesive. In this case, the tension caused by bolt clamping force or adhesive force may distort the mirror surface. Also, form accuracy error of the contact surface have a negative impact on wrenched mirror surface which assembled by bolts or adhesive. In this study, stress and distorted displacements on mirror surface were analyzed according to the different contact surface form accuracies and bolt clamping forces by using the finite element analysis method.

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF

Optical Design of Multimedia-Embedded LED Dental Astral Lighting using the Reverse Dual Reflector Method

  • Kwon, Young Hoon;Hwang, Hyo Chang;Jun, Hwa Joon;Kwon, Jin Hyuk
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.409-414
    • /
    • 2015
  • Light-emitting diodes (LED) have many advantages for dental astral lighting because of their high color rendering index (CRI), low power consumption, light weight and longer life. A dental astral lamp is specially designed and simulated for securing the extra space for installing a multimedia display that will be helpful for treating young patients. The optical system using the reverse dual reflection method consisted of four illumination modules disposed at the four corners of the dental astral lamp, and each module comprises a high power LED, an elliptical mirror, and a multifacet reflector assembly using eight cylindrical mirrors. It is shown that the required illuminance, illumination pattern, and the illumination uniformity are well satisfied.

A Feasibility Study of Using a Mini-dish Cluster for Solar Power Generation (소형 태양 반사경 클러스터를 이용한 태양열 발전에 대한 타당성 연구)

  • Oh, Seung-Jin;Lee, Jung-Sung;Hyun, Joon-Ho;Kim, Nam-Jin;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.161-164
    • /
    • 2006
  • This paper introduces a preliminary work for the design of a mini-dish cluster system for power general ion. Each mini-dish (typically has a 20 to 30cm in diameter) is designed with a simple parabolic profile, concentrating sun light (after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning) onto a centrally located small plane(or concave) mirror which is placed on the bottom side of the transparent glass cover. The mirror with a mini-dish concentrator is designed to focus beam radiation onto a focal point before it enters a bundle of optical fibers connected to a remote receiver for power generation different options are considered In designing a mini-dish concentrator to maximize its effectiveness for the collection and use of solar energy.

  • PDF

A Feasibility Study of using Mini-dish Systems for Solar Power Generation (소형 태양 반사경 Cluster를 이용한 태양열 발전에 대한 타당성 연구)

  • Oh, Seung-Jin;Hyun, Joon-Ho;Chun, Won-Gee;Han, Hyun-Joo;Kim, Jeong-Tai
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.39-45
    • /
    • 2006
  • This paper introduces a preliminary work for the design of a mini-dish cluster system for power generation. Each mini-dish [typically has a 20 to 30 cm in diameter] is designed with a simple parabolic profile concentrating sun light [after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning] onto a centrally located small plane[or concave] mirror which is placed on the bottom side of a transparent glass cover. The mirror with a mini-dish concentrator is designed to focus beam radiation onto a focal point before it enters a bundle of optical fibers connected to a remote receiver for power generation. Different options are considered in designing a mini-dish concentrator to maximize its effectiveness for the collection and use of solar energy.

  • PDF

The Preliminary Design and Fabrication of a Daylighting Device with Mini-dish Cluster (자연채광용 Mini-dish 클러스터의 기본설계 및 시제품 제작에 관한 연구)

  • Han, Hyunjoo;Kim, Jeong-Tai
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.11-16
    • /
    • 2006
  • This work has carried out some preliminary studies for the utilization of a solar mini-dish system capable of concentrating solar rays to higher densities. A typical mini-dish system considered employs an array of solar mini-dishes where major components are light and compact. It consists of small mini-dishes, optical fiber bundles and diffusers at the end. Each mini-dish (typically has a 20 to 30 cm in diameter) is designed with a simple parabolic profile, concentrating sunlight (after the glass glazing cover to avoid dust deposition on the reflector and facilitate cleaning) onto a centrally-located small mirror which is placed on the bottom side of the transparent glass cover. The focused sunlight is reflected by the mirror surface onto a focal point where the receiving aperture of a homogenizer is located. Optical fibers are used to carry high-density solar rays to the other end where diffusers are mounted for indoor illumination. The proposed high density mini-dish system could make an efficient daylighting system as it excludes large moving parts and expandable if necessary. Each component of the system could be made from the off-the-shelf technology and thus, make the generic unit inexpensive to manufacture. Depending on spatial demand or characteristics, the amount of introducing daylight could be controlled. Preliminary tests have been carried out for a trial system to check any functional problems when in operation. Suggestions are also made to improve the design enhancing its performance and applicability.

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.