• Title/Summary/Keyword: Reflected pressure

Search Result 246, Processing Time 0.024 seconds

Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios (압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Yong-Sseok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom (해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구)

  • 나인삼;조철희;정우철;김두홍
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

The Effect of Intake and Exhaust Pulsating Flow on the Volumetric Efficiency in a Diesel Engine (디젤기관의 흡.배기관 맥동류가 체적효율에 미치는 영향)

  • Lee, S.D.;Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-16
    • /
    • 2006
  • The pressure fluctuation in the intake and exhaust pipe of 4 stroke-cycle diesel engine is caused by reciprocating motion of piston for suction of fresh air and exhaust of burned gas. this gas dynamic effect can be utilized for increase the volumetric efficiency. Many empirical studies have been carried out to investigate the effects of intake pulsating flow on the volumetric efficiency. However, when the gas dynamic effects are utilized for the variable speed engine to increase its performance, The speed range in which the maximum volumetric efficiency is limited and there occurs some difficulties in lay-out of intake system because it become too long. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow becomes more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on the volumetric efficiency. In this paper the effects of pulsating flow of intake and exhaust pipes on volumetric efficiency were examined and evaluated. It was found that volumetric efficiency was affected by pulsating flow of intake and exhaust pipes.

  • PDF

The comfort evaluation and analysis of the urban rail vehicle (도시철도차량 시트의 안락성 평가 및 분석)

  • Goo, Jae-Kwang;Suh, Woo-Sung;Choi, Se-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.222-228
    • /
    • 2007
  • In order to solve the problem of traffic holdups and environmental pollution(contamination), several metropolises are operating the subway and many local government plans hereafter the light rail vehicle operation and it is in the process of preparing. This point of time, it need to evaluate the comfortable characteristic of the seat which is closely connected with passenger and it should be reflected to the product design through the data analysis. The methods of the comfortable characteristic evaluation should be considered to various methods from physical factor to psychological factor. Among these, the most universal and possible quantitative measurement estimate through 'Body pressure measurement system'. From this paper, it was measured the body pressure of the subway seat which is in the process of operating in a domestic and it will be compared and analyzed the material & seat shape, so we evaluated the comfortable characteristic of the short-distance transportation railway vehicle. It was operated the man and woman who belongs in standard shape of Korean, we compared and analyzed the Peak position where the body pressure is visible and body pressure spread out.

  • PDF

Determinants of the Brachial-ankle Pulse Wave Velocity in Patients with Metabolic Syndrome and Ischemic Stroke (대사증후군을 동반한 허혈성 뇌혈관 질환 환자의 맥파속도에 관한 연구)

  • Kim, Dong-Woung;Park, Bo-Ra
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.551-557
    • /
    • 2011
  • The purpose of this study is to investigate the relation between brachial-ankle pulse wave velocity and the features of metabolic syndrome, and differences according to sex in patients diagnosed cerebral infarction. The study group comprised 61 patients over age 30 who were diagnosed cerebral infarction, accompanied with metabolic syndrome. The brachial-ankle pulse wave velocity, blood pressure, lipid profiles, fasting blood glucose, body mass index were measured. Also we checked past history of patients. Then we analyzed the association between brachial-ankle pulse wave velocity and the features of metabolic syndrome. Pearson correlation analysis reflected the variables affecting the brachial-ankle pulse wave velocity as follows : Age, SBP(systolic blood pressure), DBP(diastolic blood pressure), FBS(fasting blood glucose) were positively correlated. As a result of regression analysis, in patients with cerebral infarction accompanied with metabolic syndrome, the brachial-ankle pulse wave velocity is affected by age to men, SBP, FBS, DBP to women. The brachial-ankle pulse wave velocity is not affected by the components of metabolic syndrome, except blood pressure, FBS, in patients with ischemic stroke.

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse (충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구)

  • Myojung Kwak;Joonyoung Yoon;Seungmin Kwon;Yoojeong Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

A STUDY ON THE PRESSURE BEHAVIOR INSIDE PROPELLANT LINE OF SATELLITE (인공위성 연료배관의 유압특성 연구)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.207-214
    • /
    • 2002
  • One of the way to derive design parameters of the fuel feeding system in satellite propulsion system is to analyze unsteady flow of liquid propellant (hydrazine). During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a set of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves we damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and pressure behavior inside the propellant line obtained through some governing parameter variation is presented in this work.