• 제목/요약/키워드: Reflected overpressure

검색결과 5건 처리시간 0.021초

압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가 (Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents)

  • 방승기;신진원;정현진
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

반밀폐공간 내 점화원의 위치가 수소-공기 혼합물 벤트폭연에 미치는 영향 (Effect of Ignition Location on a Vented Deflagration of Hydrogen-air Mixtures in Semi-confined Space)

  • 윤웅기;박병직;황인주;김우경;김양균
    • 한국수소및신에너지학회논문집
    • /
    • 제35권4호
    • /
    • pp.415-427
    • /
    • 2024
  • Explosion experiments were conducted using a rectangular concrete structure filled with hydrogen-air mixture (29.0%). In addition, the effect of ignition location on explosion was investigated. The impact on overpressure and flame was increased with the increasing distance of the ignition source from the vent. Importantly, depending on the ignition location the incident pressure was up to 24.4 times higher, while the reflected pressure was 8.7 times higher. Additionally, a maximum external overpressure of 30.01 kPa was measured at a distance of 2.4 m from the vent, predicting damage to humans at the injury level (1% fatality probability). Whereas, no significant damage would occur at a distance of 7.4 m or more from the vent.

공기 중 폭발에 의한 함정의 손상반경 간이 계산식 개발 (Development of a Simplified Formula for the Damage Radius of a Naval Ship due to an AIR EXplosion (AIREX))

  • 최완수;유원선;이현엽;신윤호;정정훈;김의영
    • 대한조선학회논문집
    • /
    • 제57권4호
    • /
    • pp.207-212
    • /
    • 2020
  • To decide a separation distance of the redundant vital equipment in a naval ship, the damage radius due to an aerial explosion should be estimated. In this research, a simplified formula for the damage radius has been developed by using existing empirical formulae for reflected shock pressure and shock lethality value of equipment. As a numerical example, the damage radius for a typical pump aboard a naval ship has been calculated by the developed formula and compared with the results calculated by Measure of Total Integrated Ship Survivability (MOTISS) which is one of survivability analysis codes verified, validated and accredited by the US Navy. Also, comparison with the results calculated by existing other simplified formulae has been made.

LPG 충전소의 BLEVE 현상에 따른 피해효과 분석 (A Study on Damge Effect from Boiling Liquid Expanding Vapor Explosion(BLEVE) of LPG Charging Facility)

  • 노삼규;김태환;함은구
    • 한국가스학회지
    • /
    • 제3권3호
    • /
    • pp.45-50
    • /
    • 1999
  • 도심지내에 위치한 부천 LPG충전소 사고 조사를 통하여 가장 피해효과가 큰 탱크로리 폭발에 따른 결과를 분석하였다. 분석범위는 BLEVE 현상에 의한 방출열과 과압이 충전소주변에 위치한 구조물이나 인체에 미치는 영향을 대상으로, 실제 현장조사를 통하여 수집된 피해결과와 이론적인 모델(PHAST-Process Hazad Analysis Sortware Tools) 분석 결과를 비교하였다. 부천 LPG 충전소 폭발 사고의 피해효과는 방출열의 경우 두 가지 모두 큰 차이를 보이지 않았으나, 과압의 경우, 실제 피해는 이론적 모델분석결과의 약 $15\%$정도에 해당하는 축소된 거리에서 나타났다. 또한, 충전소 인근에 위치한 구조물에 대한 피해효과는 부분적으로 과압에 의한 균열 및 붕괴 현상보다는 열 효과에 의한 콘크리트 강도 저하와 성상변화가 크게 나타났다.

  • PDF

LPG 충전소 중대사고의 피해효과에 관한 연구 - 부천 LPG충전소 사고 사례를 중심으로 - (A Study on Damage Effect from Major Accident of LPG Charging Facility - A case study of an LPG Charging and Automotive Outlet -)

  • 노삼규;김태환;함은구;홍창문
    • 시큐리티연구
    • /
    • 제2호
    • /
    • pp.83-98
    • /
    • 1999
  • The LPG station's explosion at Bucheon city was a major accident which with rare frequency of occurrence but large damage effect. Therefore, to prevent similar accident in the future from LPG chargings stations which located at inner urban area, it needs to identify the damage effects of such facilities by comparing theoretically quantities risks-PHAST. The BLEVE effects from the accident showed similar level in case of heat flux, however, the over pressure level reflected at reduced distance. The structure damage to the nearby area showed comparatively large reduction of concrete strength and shape changes through by heat effect while the overpressure effect was small.

  • PDF