Acknowledgement
본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영지원비지원사업으로 수행되었습니다(과제 번호 20240176-001, 수소도시 기반시설의 안전 및 수용성 확보기술 개발).
References
- Y. Cheon, "Review of global carbon neutral strategies and technologies", Journal of the Korean Society of Mineral and Energy Resources Engineers, Vol. 59, No. 1, 2022, pp. 99-11 2, doi: https://doi.org/10.32390/ksmer.2022.59.1.099.
- E. Y. Kim, "Major projects and future considerations in 2020 according to the hydrogen economy revitalization road map", NABO Focus, Vol. 7, 2019, pp. 1-4. Retrieved from https://www.nabo.go.kr/Sub/01Report/12_Board.jsp?func=view&funcSUB=¤tPageSUB=0&pageSizeSUB=10&key_typeSUB=&keySUB=&search_start_dateSUB=&search_end_dateSUB=&arg_id=0&bid=68&rbid=0&ridx=0&bidSUB=0&cid1=0&cid2=0&cid3=0&cid4=0&cid5=0&cid6=0&cid7=0&arg_cid1=0&arg_cid2=0&arg_class_id=0¤tPage=6&pageSize=10&pagePerBlock=0&nowBlock=6&key_type=&key=&search_start_date=&search_end_date=&class_id=0&sortBy=&ascOrDesc=&bidx=7060&idx=7060.
- Ministry of Trade, Industry and Energy (MOTIE), "Leap to become a world-class hydrogen economy leader-government, hydrogen economy revitalization road map announcement", MOTIE, 2019. Retrieved from https://www.korea.kr/briefing/pressReleaseView.do?newsId=156313559.
- U. G. Yoon, B. Park, W. Kim, and Y. Kim, "Large scale experiment of a roof vented deflagration of high-concentration hydrogen-air mixtures", Process Safety and Environmental Protection, Vol. 184, 2024, pp. 1411-1423, doi: https://doi.org/10.1016/j.psep.2024.02.049.
- C. R. Bauwens, J. Chaffee, and S. B. Dorofeev, "Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures", International Journal of Hydrogen Energy, Vol. 36, No. 3, 2011, pp. 2329-2336, doi: https://doi.org/10.1016/j.ijhydene.2010.04.005.
- C. R. Bauwens, J. Chao, and S. B. Dorofeev, "Effect of hydrogen concentration on vented explosion overpressures from lean hydrogen-air deflagrations", International Journal of Hydrogen Energy, Vol. 36, No. 22, 2012, pp. 17599-17605, doi: https://doi.org/10.1016/j.ijhydene.2012.04.053.
- J. Wang, J. Guo, F. Yang, J. Zhang, and S. Lu, "Effects of hydrogen concentration on the vented deflagration of hydrogen-air mixtures in a 1-m3 vessel", International Journal of Hydrogen Energy, Vol. 43, No. 45, 2018, pp. 21161-21168, doi: https://doi.org/10.1016/j.ijhydene.2018.09.108.
- T. Skjold, H. Hisken, S. Lakshmipathy, G. Atanga, L. Bernard, M. van Wingerden, K. L. Olsen, M. N. Holme, N. M. Turoy, M. Mykleby, and K. van Wingerden, "Vented hydrogen deflagrations in containers: effect of congestion for homogeneous and inhomogeneous mixtures", International Journal of Hydrogen Energy Vol. 44, No. 17, 2019, pp. 8819-8832, doi: https://doi.org/10.1016/j.ijhydene.2018.10.010.
- P. Li, P. Huang, Z. Liu, B. Du, and M. Li, "Experimental study on vented explosion overpressure of methane/air mixtures in manhole", Journal of Hazardous Materials, Vol. 374, 2019, pp. 349-355, doi: https://doi.org/10.1016/j.jhazmat.2019.04.046.
- Z. Tang, J. Li, J. Guo, S. Zhang, and Z. Duan, "Effect of vent size on explosion overpressure and flame behavior during vented hydrogen-air mixture deflagrations", Nuclear Engineering and Design, Vol. 361, 2020, pp. 110578, doi: https://doi.org/10.1016/j.nucengdes.2020.110578.
- W. Liu, J. Guo, J. Zhang, and S. Zhang, "Effect of vent area on vented deflagration of hydrogen-methane-air mixtures", International Journal of Hydrogen Energy, Vol. 46, No. 9, 2021, pp. 6992-6999, doi: https://doi.org/10.1016/j.ijhydene.2020.11.123.
- M. Schiavetti, A. Marangon, and M. Carcassi, "Experimental study of vented hydrogen deflagration with ignition inside and outside the vented volume", International Journal of Hydrogen Energy, Vol. 39, No. 35, 2014, pp. 20455-20461, doi: https://doi.org/10.1016/j.ijhydene.2014.04.006.
- X. Rocourt, S. Awamat, I. Sochet, and S. Jallais, "Vented hy drogen-air deflagration in a small enclosed volume", International Journal of Hydrogen Energy, Vol. 39, No. 35, 2014, pp. 20462-20466, doi: https://doi.org/10.1016/j.ijhydene.2014.03.233.
- Z. Liang, "Scaling effects of vented deflagrations for near lean flammability limit hydrogen-air mixtures in large scale rectangular volumes", International Journal of Hydrogen Energy, Vol. 42, No. 10, 2017, pp. 7089-7103, doi: https://doi.org/10.1016/j.ijhydene.2016.12.086.
- Q. Zhang, Y. Wang, and Z. Lian, "Explosion hazards of LPG-air mixtures in vented enclosure with obstacles", Journal of Hazardous Materials, Vol. 334, 2017, pp. 59-67, doi: https://doi.org/10.1016/j.jhazmat.2017.03.065.
- J. Guo, C. Wang, X. Liu, and Y. Chen, "Explosion venting of rich hydrogen-air mixtures in a small cylindrical vessel with two symmetrical vents", International Journal of Hydrogen Energy, Vol. 42, No. 11, 2017, pp. 7644-7650, doi: https://doi.org/10.1016/j.ijhydene.2016.05.097.
- Y. Chen, Z. Li, C. Ji, and X. Liu, "Effects of hydrogen concentration, non-homogenous mixtures and obstacles on vented deflagrations of hydrogen-air mixtures in a 27 m3 chamber", International Journal of Hydrogen Energy, Vol. 45, No. 11, 2020, pp. 7199-7209, doi: https://doi.org/10.1016/j.ijhydene.2019.11.082.
- National Fire Protection Association (NEPA), "NEPA 68: standard on explosion protection by deflagration venting", NEPA, 2023. Retrieved from https://www.nfpa.org/codesand-standards/nfpa-68-standard-development/68.
- Korean Fire Protection Association (KFPA), "KFS 720: standard on venting of deflagrations code", KFPA, 1998. Retrieved from https://ulsansafety.tistory.com/1827.
- D. A. Crowl and J. F. Louvar, "Chemical process safety: fundamentals with applications", 2nd ed, Prentice Hall, USA, 2002, pp. 264-282.
- R. M. Jeffries, L. Gould, D. Anastasiou, and A. P. Franks, "Derivation of fatality probability functions for occupants of buildings subject to blast loads", Probabilistic Safety Assessment and Management '96, 1996, pp. 669-675, doi: https://doi.org/10.1007/978-1-4471-3409-1_107.
- B. Park, Y. Kim, and I. J. Hwang, "Risk assessment of explosion accidents in hydrogen fuel-cell rooms using experimental investigations and computational fluid dynamics simulations", Fire, Vol. 6, No. 10, pp. 390, doi: https://doi.org/10.3390/fire6100390.
- J. Debroey, "Probit function analysis of blast effects on human beings [Master's thesis]", Leuven: Royal Military Academy, 2016.
- S. Mannan, "Lees' loss prevention in the process industries : hazard identification, assessment, and control", 3rd ed, Elsevier Butterworth-Heinemann, Netherlands, 2005, doi: https://doi.org/10.1016/C2009-0-24104-3.
- L. E. Fugelso, L. M. Weiner, and T. H. Schiffman, "Explosion effects computation aids", General American Transportation Corporation, 1972. Retrieved from https://apps.dtic.mil/sti/pdfs/AD0903279.pdf.
- National Fire Protection Association (NFPA), "NEPA 3: hydrogen technologies code", NFPA, 2023. Retrieved from https://www.nfpa.org/product/nfpa-2-code/p0002code.
- Health and Safety Executive (HSE), "Methods of approximation and determination of human vulnerability for offshore major accident hazard assessment", HSE, 2013. Retrieved from https://www.hse.gov.uk/foi/internalops/hid_circs/technical_osd/spc_tech_osd_30/spctecosd30.pdf.