• Title/Summary/Keyword: Refining of Ti powder

Search Result 8, Processing Time 0.023 seconds

Detail analysis of the peak disappearance of minor phase in mechanically alloyed samples(II) (기계적 합금화 시료에서 미소상 피이크의 소멸현상 해석(II))

  • Kim, Hye-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • Refining of powder particles and their dissolution into the Al matrix during mechanical alloying(MA) were investigated by using X-ray diffraction(XRD) transmission electron microscopy (TEM) functions of alloy composition, milling time and ball to powder ratio(BPR). It is found that Ti particles less than 20nm are observed in a dark field image of mechanically alloyed Al-10wt%Ti whose XHD pattern exhibits no Ti peak. The observed change of lattice constant of AI indicates that about 1 wt%Ti can he solved in Al after MA for a long time, independent of alloy composition, milling time and BPR, suggesting that most of Ti particles arc retained in the Al matrix. It is concluded that the disappearance of XRD peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti Particles.

  • PDF

The Study on Peak Disappearance of Minor Phase and Formation of ${Al_3}Ti$ in Mechanically Alloyed Al-Ti Samples (기계적 합금화한 Al-Ti 시료에서 미소상 피이크의 소멸현상과 ${Al_3}Ti$ 형성에 관한 연구)

  • Kim, Jin-Gon;Kim, Hye-Seong;Kim, Byeong-Hui
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1035-1041
    • /
    • 2001
  • The refining process and solubility of Ti in Al matrix during mechanical alloying (MA) were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM) as functions of alloy composition, milling time and ball to powder ratio (BPR). Mechanical alloyed samples were annealed for investigating their stability and the formation behavior of$Al_3Ti$in the temperature range from$200{\circ}C$to$600{\circ}C$. It is observed from present experimental that disappearance of Ti peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti particles The annealing of the mechanically alloyed Al-Ti powders show differences in aluminide formation behavior when Ti content in Al is equal to or less than l0wt% and higher than l5wt%Ti. When Ti-content in Al is equal to or less than l0wt%, the MA powders transform directly to a global equilibrium state forming $DO_{22}- type\;Al_3$Ti above$400{\circ}C$. In the Al-Ti samples with equal to or higher than l5wt%Ti, transitional phases of cubic$Al_3Ti$and tetragonal $Al_{24}Ti_8$ are formed above$400{\circ}C$. They are stable only below$500{\circ}C$, and, $DO_{22}-type\;Al_3Ti$ becomes dominant aluminide at temperature higher than$ 600{\circ}C$.

  • PDF

How to Improve the Ductility of Nanostructured Materials

  • Eckert J.;Duhamel C.;Das J.;Scudino S.;Zhang Z. F.;Kim, K. B.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.340-350
    • /
    • 2006
  • Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

Impurity Analysis of Intermetallic Ti-51at% Al Powders Produced by Plasma Rotating Electrode Process (금속간화합물 Ti-51at%Al 분말 내의 불순물 분석)

  • Choi, Good-Sun;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.157-160
    • /
    • 1992
  • Unusual surface impurity levels of PREPed Ti-51at%Al powders were analyzed using Auger spectroscopy and they were compared with these obtained from bulk starting electrode. Oxygen and carbon contents were varied very much with particle size. Powder surfaces were believed to be mainly covered by a complex compound containing Ti, Al, O, and C. The decrease in contents of oxygen and carbon of powders were attributed to the certain refining reaction of transfer type DC Ar plasma during the powder production.

  • PDF

Effect of Ball Milling Conditions on the Microstructure and Dehydrogenation Behavior of TiH2 Powder (볼 밀링 조건이 TiH2 분말의 미세조직과 탈수소화 거동에 미치는 영향)

  • Ji Young Kim;Eui Seon Lee;Ji Won Choi;Youngmin Kim;Sung-Tag Oh
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.132-136
    • /
    • 2024
  • This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 ㎛. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 ㎛. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.

Grain Size Refinement in CuAlNi Shape Memory Alloy using Melt-spun Ribbon (급냉응고된 Ribbon을 이용한 CuAINi 형상기억합금의 결정미세화)

  • Choe, Yeong-Taek
    • 연구논문집
    • /
    • s.22
    • /
    • pp.127-139
    • /
    • 1992
  • The mechnial properties such as fracture strength, ductility and fatigue strength of Cu shape memory alloy are lower than those of Ti-Ni SMA, because of their high elastic anisotropy and large grain size. And in order to improve the mechanical property of Cu SMA, some techniques such as casting method by addition of refining element, powder metallurgy and rapid solidification process have been studied on the refinement of the grain size of Cu SMA. This study was carried out to refine the grain size of CuAlNi SMA by applying the melt spinning method. According to this study, the conclusions are as follows; - grain size of the melt-spun ribbon was about $1\mum$ - there was not change in grain size, although increasing of hot pressing temperature -grain size of the hot-extruded specimen was about $30-40\mum$, it is more refiner than that of castings

  • PDF

Recycling and Applications of Titanium Alloy Scraps (티타늄 합금 스크랩의 재활용 및 응용 기술 현황)

  • Oh, Jung-Min;Kwon, Hanjung;Lim, Jae-Won
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • In the present paper, we review recycling and applications of titanium binary alloy scraps. The recycling techniques are to successfully prepare low oxygen content ingots using hydrogen plasma arc melting (HPAM) and to produce low oxygen content titanium alloy powders by Hydrogenation-dehydrogenation (HDH) and Deoxidation in solid state (DOSS) process. In addition, as applications of the titanium binary alloy scraps, Ti based solid-solution carbide powders, which would be used for producing Ti based solid-solution cermets with high toughness, were prepared using the titanium binary alloy scraps. These results confirmed that the titanium alloy scraps could be recycled and refined using the HPAM. The resulting oxygen content of the titanium alloy powders were below 1,000 ppm after powderizing. Finally, we had confirmed that the refined titanium alloy powders were able to be utilized as raw materials for preparing the toughened cermets.