• Title/Summary/Keyword: Refining

Search Result 852, Processing Time 0.028 seconds

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

Long-Term Leaching Characteristics of Arsenic Contaminated Soils Treated by the Stabilization Method (안정화 처리된 비소오염토양의 장기 용출특성)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1463-1474
    • /
    • 2008
  • In order to investigate stabilization effect and sustainability on As-contaminated farmland soils which were affected the abandoned mine site and stabilized by zerovalent iron(ZVI) and industrial by-products, batch-scale and pilot-scale tests were carried out. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used in treatment materials to reduce the As leaching. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. The results of batch-scale tests was shown that the reduction of As concentration was observed in all samples and it was expected that ZVI and steel refining slag were more effective than other treatment materials to stabilize As compounds. In pilot-scale tests, columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag in the same mixing ratio of 3%. Distilled water was discharged into the columns with the velocity of 0.3 pore volume/day. During the test, pH, EC, Eh and As concentration were measured in the regular term(1pore volume). after six months, pilot-scale tests were retested to investigate sustainability of treatment materials. As a result, It was shown that the leachate from control column was continuously released during the test period and its concentration was greater than $100ug{\cdot}L^{-1}$ which was exceeded the national regulation of water discharged to river or stream ($50ug{\cdot}L^{-1}$). On the other hand, soil treated with ZVI and steel refining slag showed that the concentrations of leachate were lower than national regulation of water discharged to river or stream. Therefore it was expected that ZVI and steel refining slag could be applied to the farmland site as the alternative treatment materials.

  • PDF

Analysis on Applicability of Refined Sap of Acer spp. (고로쇠나무류 정제수액의 활용 가능성에 관한 연구)

  • Kwon, Su-Deok;Goo, So-Young;Kim, Jung-Wun;Kim, Chang-Hwan;Kim, Jong-Kab;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.43 no.5
    • /
    • pp.57-62
    • /
    • 2009
  • This study was conducted to analyze to the applicability of refined saps of Acer mono, A. mono for. rubripes, A. okamotoanum through sap refining system. 1 species of Bacillus genus, 3-4 species of yeast and 2 species of fungi were detected in the origin sap of three Acer spp. The pH in the origin sap were 6.5, and decreased in refining sap as 6.3-6.4. Sucrose in sugar components was detected in the origin and refining sap of Acer spp., but glucose and fructose were not detected. Compared the origin and refining sap, mineral components decreased slightly in refining sap. These results indicate that refining sap of Acer spp. are drinkable with long-term storage.

Strength Property Improvement of OCC-based Paper by Various Mechanical and Chemical Treatments of its Fiber (골판지 고지의 물리화학적 처리에 의한 강도향상)

  • Seo, Yung B.;Lee, Jong Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1999
  • To increase the strength properties of recycled fiber, especially OCC (Old Corrugated Container) in this study, we used the mechanical pretreatment on the fibers before refining. The mechanical action in the Hobart mixer induced high shear and compression on the fibers, which resulted in the breakdowns of fiber internal structure, and microcompressions on the surface of the fibers. We evaluated the degree of mechanical treatment by fiber curl index. Four different refining techniques were applied to the pretreated fibers (Valley beater, Kady mill, PFI mill, and Impact refining) to find the best combination of the pretreatment and the refining methods. Conclusions were summarized as followed. 1. In keeping the fiber length from shortening, Kady mill and PFI mill refining were effective. Kady mill and Valley beater application tended to straighten out the fiber shapes. 2. Valley beating increased the breaking length of the handsheets better than other methods, while lowering the tear strength most. The mechanical pretreatment increased breaking length about 10% in average irrespective of four different refining methods. 3. Tear strength was increased by the mechanical pretreatment and by the PFI mill refining. 4. Burst strength was increased by the mechanical pretreatment and by valley beating method. 5. In increasing the breaking length and burst strength while keeping tear strength, combination of mechanical pretreatment and Valley beating were most effective.

  • PDF

Study on the Copper Electro-refining from Copper Containing Sludge (저품위 동(Cu) 함유 슬러지로부터 동 전해정련에 관한 연구)

  • Lee, Jin-Yeon;Son, Seong Ho;Park, Sung Cheol;Jung, Yeon Jae;Kim, Yong Hwan;Han, Chul Woong;Lee, Man-seung;Lee, Ki-Woong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.84-90
    • /
    • 2017
  • The electro-refining process was performed to recovery high purity copper from low grade copper containing sludge in sulfuric acid. The surface morphologies and roughness of electro-refining copper were analyzed with variation of the type and concentration of organic additives, the best surface morphology was obtained 5 ppm of the gelatin type and 5 to 10 ppm of the thiol type organic additive. The crude metal consisted of copper with 86.635, 94.969 and 99.917 wt.%, several impurity metals of iron, nickel, cobalt and tin by pyro-metallurgical process. After electro-refining process, the purity of copper increases to 3N or 4N grade. The impurity concentrations and copper purities of copper crude metals, electrolyte and electro-refining copper were analyzed using ICP-OES, the electro-refining time and purity of copper crude metal to recover 4N grade copper were deduced.

Evaluation of Beatability of Two Kinds of Cotton Linter Pulps (면 린터 펄프 종류에 따른 고해적성 평가)

  • Shin, Hyeon-Sik;Park, Jong-Moon;Lee, Jin-Ho;Kim, Jeong-Jung;Kil, Jung-Ha
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.56-63
    • /
    • 2013
  • In this study, paper mill applicability of two kinds of cotton pulps which have different initial freeness, fiber length and intrinsic fiber strength were investigated. Basic properties such as CED viscosity, fiber length, and crystallinity of major two kinds of cotton pulps were analyzed, and beatability of cotton pulps and physical properties of handsheet made from two kinds of cotton pulps were compared. Laboratory beating was performed at different refining conditions such as refining loads and freenesses. Relationship between beating degree and physical properties of handsheet were compared to seek optimum condition of refining for different cotton pulps application to paper mill.

Mechanical Impact Treatment on Pulp fibers and Their Handsheet Properties

  • Yung B. Seo;Kim, Dukki;Lee, Jong-Hoon;Yang Jeon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.56-62
    • /
    • 2002
  • Alternative way of shaping fibers suitable for papermaking was introduced. Impact refining, which was done simply by hitting wet fibers with a metal weight vertically, was intended to keep the fibers from shortening and to cause mostly internal fibrillation. Virgin chemical pulp, its recycled one and OCC were used in the experiment. It was noticed from the experiment that impact refining on virgin chemical pulp kept the fiber length and increased bonding properties greatly. However, in the recycled fibers from the chemical pulp, fiber length and bonding properties were decreased. In OCC, which seems to contain fractions of semi-chemical pulp and mechanical pulp (GP), and which is recycled pulp from corrugated boxes, fiber length and bonding properties were decreased disastrously. We believe recycled cellulosic fibers (recycled chemical pulp and OCC in this case), which went through hornification, were less resistant to the mechanical impact than virgin chemical pulp. For virgin chemical pulp, impact refining allowed no significant fiber length shortening, high WRV, and high mechanical strength.

Effects of Electrodeposition condition on the fracture characteristics of 80Sn-20Pb electrodeposits aged at 15$0^{\circ}C$ (15$0^{\circ}C$에서 시효처리한 80Sn-20Pb 합금 도금층의 파괴특성에 전착조건이 미치는 영향)

  • 김정한;서민석;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.292-302
    • /
    • 1994
  • Alloy deposits of 80Sn-20Pb, electroplated on Cu-based leadframe alloy from an organic sulfonate bath were aged at $150^{\circ}C$ to form intermetallic phases between substrate and deposit, and effects of the deposit morphology, influenced by deposition conditions, on the fracture resistance of the 80Sn-20Pb deposit aged at $150^{\circ}C$ were examined. The growth rate of intermetallic compound layer on aging depended on the microstructure of deposit ; it was fastest in deposit formed using pulse current in bath without grain refining additive, but slowest in deposit formed using dc current in bath containing grain refining additive in spite of similar structure with equivalent grain size. The grain refining additive incorporated in electrodeposit appears to inhibit diffusion of atoms on aging, resulting in slow growth of intermetallic layer in the thickness direction but substantial growth in the lateral one. Density of surface cracks that were occurring when samples were subjected to the $90^{\circ}$-bending test increased with increasing the thickness of intermatallic layer on aging. For the same aged samples, the surface crack density of the sample electrodeposited from a bath containing the grain refining additive was the least due to the inhibiting effect of the additive incorporated into the deposit during electrolysis on atomic diffusion.

  • PDF

A Review of Kinetic Model for Production of Highgrade Steel : Part. 1. Simulation Model Based on Coupled Reaction (고급강 제조 반응 모델의 검토 : Part. 1. Coupled Reaction 기반 시뮬레이션 모델)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • In the secondary refining process for the production of high-grade steel, the proper composition is maintained by alloying elements, and non-metallic inclusions are controlled for high cleanliness. Complex reactions occur simultaneously between the molten steel, slag, inclusions, refractories, and alloying elements during the secondary refining process. Previous works have reported simulation models based on kinetics to predict the compositional changes in molten steel, slag, and inclusions in actual processes. Analytical reviews are required for the models to predict the process accurately. In this study, we reviewed and analyzed simulation models based on the coupled reaction model for the secondary refining process.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.