Browse > Article
http://dx.doi.org/10.7844/kirr.2021.30.1.3

A Review of Kinetic Model for Production of Highgrade Steel : Part. 1. Simulation Model Based on Coupled Reaction  

Kim, Jeong-In (Dep. of Advanced Materials Engineering, Chosun University)
Kim, Sun-Joong (Dep. of Materials Engineering & Science, Chosun University)
Publication Information
Resources Recycling / v.30, no.1, 2021 , pp. 3-13 More about this Journal
Abstract
In the secondary refining process for the production of high-grade steel, the proper composition is maintained by alloying elements, and non-metallic inclusions are controlled for high cleanliness. Complex reactions occur simultaneously between the molten steel, slag, inclusions, refractories, and alloying elements during the secondary refining process. Previous works have reported simulation models based on kinetics to predict the compositional changes in molten steel, slag, and inclusions in actual processes. Analytical reviews are required for the models to predict the process accurately. In this study, we reviewed and analyzed simulation models based on the coupled reaction model for the secondary refining process.
Keywords
Secondary refining process; Kinetic model; Coupled reaction; Complex reaction model; Non-metallic inclusions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. -I. Kim and S. -J. Kim, 2020 : Evolution of Mg-Al-based Inclusions with Changes in Mg Content during Ladle Treatment Based on a Coupled Reaction Model, ISIJ Int., 60(4), pp.691-698.   DOI
2 J. -I. Kim and S. -J. Kim, 2020 : Influence of Cr Content in Steel on the Behavior of MgO·Al2O3 Spinel Inclusions During Ladle Treatment by Using Kinetic Reaction Model, Trans. Indian Inst. Met., Online-publised, Springer Link.
3 C. Liu, M. Yagi, X. Gao, et al., 2018 : Kinetics of Transformation of Al2O3 to MgO·Al2O3 Spinel Inclusions in Mg-Containing Steel, Metall. Mater. Trans. B, 49(1), pp. 113-122.   DOI
4 Q. Shu, O. Volkova, S. Lachmann, et al., 2011 : Modification of Inclusion Composition in Steel During Secondary Metallurgical Ladle Treatment - A Comprehensive Process Simulation Model, Proc of AISTech 2011, pp.537-547, Indianapolis, Ind., USA.
5 K. J. Graham and G. A. Iron, 2008 : Coupled Kinetic Phenomena in Ladle Metallurgy, In Proc. of the 3rd international conference on process development in iron and steelmaking, pp.385-396, SCANMET III, MEFOS, Lulea, Sweden.
6 K. J. Graham, 2008 : Integrated Ladle Metallurgy Control, Thesis, McMaster University, Canada.
7 K. J. Graham and G. A. Iron, 2009 : Toward Integrated Ladle Metallurgy Control, Iron and Steel Tech., 6(1), pp. 164-173.
8 J. Lehmann, 2016 : Applications of Arcelormittal Thermodynamic Computation Tools to Steel Production, Advances in Molten Slags, Fluxes, and Salts: Proc. of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, pp.697-706, Springer, Cham.
9 A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 1. Basic Concept and Application, ISIJ Int., 53(12), pp.2110-2117.   DOI
10 A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 2. Condition to Control the Inclusion Composition, ISIJ Int., 53(12), pp. 2118-2125.   DOI
11 S. -J. Kim, A. Harada and S. Kitamura, 2011 : Condition to suppress spinel formation in ladle treatment predicted by the kinetics simulation model, Proc. of AISTech 2015, 3261, Cleveland, Ohio, USA.
12 A. N. Conejo, F. R. Lara, M. Macias-Hernandez, et al., 2007 : Kinetic Model of Steel Refining in a Ladle Furnace, Steel Res. Int., 78(2), pp.141-150.   DOI
13 X. Zhang, B. Xie, H. Y. Li, et al., 2013 : Coupled reaction kinetics of duplex steelmaking process for high phosphorus hot metal, 40(4), pp.282-289.   DOI
14 P. Wei, M. Ohya, M. Hirasawa, et al., 1990 : Interfacial Oxygen Potential in Phosphorus Reaction between Iron Oxide Containing Slag and Molten Iron of High Carbon Concentration, Tetsu-to-Hagane, 76(9), pp.1488-1495.   DOI
15 D. J. Kim and J. H. Park, 2012 : Interfacial Reaction Between CaO-SiO2-MgO-Al2O3 Flux and Fe-xMn-yAl (x=10 and 20 mass pct, y=1,3, and 6 mass pct) Steel at 1873 K (1600℃), Metall. Mater. Trans. B, 43(4), pp.875-886.   DOI
16 Y. N. Jia, L. G. Zhu, C. J. Zhang, et al., 2016 : Mass transfer behaviour of Mg in low carbon aluminium killed steel during LF refining, Ironmaking and Steelmaking, 44(10), pp.796-802.   DOI
17 Y. Liu, M. -F. Jiang, L. -X. Xu, et al., 2012 : Mathematical Modeling of Refining of Stainless Steel in Smelting Reduction Converter Using Chromium Ore, ISIJ Int., 52(3), pp.394-401.   DOI
18 S. -J. Kim, 2019 : Past and present of secondary refining model for inclusion composition control, Kinzoku, 89(9), pp.53-59. (Japanese)
19 FactSage 7.1, Thermfact/CRCR and GTT-Technologies, 1976-2020.
20 M. Hino and K. Ito, 2010 : Thermodynamic data for steelmaking, pp.10, Tohoku University Press, Sendai, Japan.
21 J. -I. Kim, S. -J. Kim and S. Kitamura, 2018 : Effect of inclusions behaviors on the formation of Al2O3 and Spinel inclusions in ladle treatment by simulation model, Proc.of ICS2018, CD-ROM, Venice, Italy.
22 J. -I. Kim and S. -J. Kim, 2018 : Evolution of inclusions during ladle treatment via simulation model with introduction of changes of Mg content in Mg-Al spinel inclusion, Abst. of 176th ISIJ 2018 meeting, Sendai, Japan.
23 J. -I. Kim and S. -J. Kim, 2019 : Composition changes in inclusions from Al2O3 to MgO via spinel formation during ladle treatment by simulation model, Abst. of 177th ISIJ 2019 meeting, Tokyo, Japan.
24 K. W. Lange, 1988 : Thermodynamic and kinetic aspects of secondary steelmaking processes, Int. Mater. Reviews, 33(1), pp.53-89.   DOI
25 J. H. Park and Y. Kang, 2017 : Inclusions in Stainless Steels - A Review, Steel Res. Int., 88, 1700130.   DOI
26 J. H. Park and H. Todoroki, 2010 : Control of MgO·Al2O3 Spinel Inclusions in Stainless Steels, ISIJ Int., 50(10), pp.1333-1346.   DOI
27 A. Harada, G. Miyano, N. Maruoka, et al., 2014 : Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al, ISIJ Int., 54(10), pp.2230-2238.   DOI
28 C. Liu, F. Huang and X. Wang, 2016 : The Effect of Refining Slag and Refractory on Inclusion Transformation in Extra Low Oxygen Steels, Metall. Mater. Trans. B, 47(2), pp.999-1009.   DOI
29 J. H. Park and Y. -B. Kang, 2006 : Effect of Ferrosilicon Addition on the Composition of Inclusions in 16Cr-14Ni-Si Stainless Steel Melts, Metall. Trans. B, 37(5), pp.791-797.
30 T. Nishi and K. Shinme, 1998 : Formation of Spinel Inclusions in Molten Stainless Steel under Al Deoxidation with Slags, Tetsu-to-Hagane, 84(12), pp.837-843.   DOI
31 J. R. Kim, Y. S. Lee, D. J. Min, et al., 2004 : Influence of MgO and Al2O3 Contents on Viscosity of Blast Furnace Type Slags Containing FeO, ISIJ Int., 44(8), pp.1291-1297.   DOI
32 J. Guo, S. Cheng, Z. Cheng, et al., 2013 : Thermodynamics for Precipitation of CaS Bearing Inclusion and Their Deformation During Rolling Process for Al-Killed Ca-Treated Steel, Steel Res. Int., 84(6), pp.545-553.   DOI
33 Z. Zhang, G. Wen, P. Tang, et al., 2008 : The Influence of Al2O3/SiO2 Ratio on the Viscosity of Mold Fluxes, ISIJ Int., 48(6), pp.739-746.   DOI
34 G. Wranglen, 1974 : Pitting and Sulphide Inclusions in Steel, Corrosion Science, 14(5), pp.331-349.   DOI
35 E. G. Webb, T. Suter and R. C. Alkire, 2001 : Microelectrochemical Measurements of the Dissolution of Single MnS Inclusions, and the Prediction of the Critical Conditions for Pit Initiation on Stainless Steel, Jour. of the Electrochemical Society, 148(5), pp.B186-B195.
36 X. Wang, 2017 : Ladle Furnace Temperature Prediction Model Based on Large-scale Data With Random Forest, IEEE/CAA Jour. of Automatica Sinica, 4(4), pp.770-774.   DOI
37 D. G. C. Robertson, B. Deo and S. Ohguchi, 1984 : Multi-component Mixed-Transport -Control Theory for Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to desulphurization of molten iron, Ironmaking and Steelmaking, 11(1), pp.44-55.
38 S. Ohguchi, D. G. C. Robertson, B. Deo, et al., 1984 : Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking and Steelmaking, 11(4), pp.202-213.