• Title/Summary/Keyword: Refinery Plant

Search Result 59, Processing Time 0.037 seconds

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.

Comparison of Measurement Methods and Size Fraction of Fine Particles (PM10, PM2.5) from Stationary Emission Source Using Korean Standard and ISO: Coal Power Plant and Refinery (국내공정시험기준과 ISO 방법을 이용한 고정오염원 미세먼지 (PM10, PM2.5) 측정 방법 및 입경분율 비교: 석탄화력발전소, 석유정제시설 중심으로)

  • Youn, Jong-Sang;Han, Sehyun;Jung, Yong-Won;Jeon, Ki-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.342-350
    • /
    • 2017
  • We report mass concentration and size fraction of TPM, $PM_{10}$ and $PM_{2.5}$ according to Korea standard test method (ES 01301.1 and ES 01317.1) and ISO 23210 methods. Particulate matters were sampled in large stationary emission sources such as a coal power plant and B-C oil refinery. The Korea standard test method PM mass concentrations showed 3~3.5 times larger than the cascade impactor method. On the other hand, the size fraction results showed less than 5% difference (i.e. $PM_{2.5}/PM_{10}$) between two methods. Moreover, the correlation coefficient ($r^2$) is 0.84 between TPM results of the Korea standard test method and CleanSYS. These results suggested not only improvement of current test criteria in terms of technical and theoretical aspects. Further, additional measurements are required in various large stationary sources to compare current field data.

A Study on the Development of Assessment Index for Catastrophic Incident Warning Sign at Refinery and Pertrochemical Plants (정유 및 석유화학플랜트 중대사고 전조신호 평가지표 개발에 관한 연구)

  • Yun, Yong Jin;Park, Dal Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.637-651
    • /
    • 2019
  • In the event of a major accident such as an explosion in a refinery or a petrochemical plant, it has caused a serious loss of life and property and has had a great impact on the insurance market. In the case of catastrophic incidents occurring in process industries such as refinery and petrochemical plants, only the proximate causes of loss have been drawn and studied from inspectors or claims adjustors responsible for claims of property insurers, incident cause investigators, and national forensic service workers. However, it has not been done well for conducting root cause analysis (RCA) and identifying the factors that contributed to the failure and establishing preventive measures before leading to chemical plant's catastrophic incidents. In this study, the criteria of warning signs on CCPS catastrophic incident waning sign self-assessment tool which was derived through the RCA method and the contribution factor analysis method using the swiss cheese model principle has been reviewed first. Secondly, in order to determine the major incident warning signs in an actual chemical plant, 614 recommendations which have been issued during last the 17 years by loss control engineers of global reinsurers were analyzed. Finally, in order to facilitate the assessment index for catastrophic incident warning signs, the criteria for the catastrophic incident warning sign index at chemical plants were grouped by type and classified into upper category and lower category. Then, a catastrophic incident warning sign index for a chemical plant was developed using the weighted values of each category derived by applying the analytic hierarchy process (pairwise comparison method) through a questionnaire answered by relevant experts of the chemical plant. It is expected that the final 'assessment index for catastrophic incident warning signs' can be utilized by the refinery and petrochemical plant's internal as well as external auditors to assess vulnerability levels related to incident warning signs, and identify the elements of incident warning signs that need to be tracked and managed to prevent the occurrence of serious incidents in the future.

Development of Catalytic Heat Exchanger for Treatment of Off-gas from Oil Refinery Plant (촉매 열교환기를 이용한 정유공장의 Off-gas 처리기술 개발)

  • 유인수;조성준;강성규;정진도
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.445-446
    • /
    • 1999
  • 근래 여천과 울산 석유화학 단지에서의 유해가스 및 폐수에 의한 환경공해는 심각하여 이제 본격적으로 규제에 진입하였다. 국내외의 환경에 대한 관심이 고조되고 생산 환경 변화에 따라 기존 생산 공정에서도 광해물질 배출과 사용 에너지를 최소화하는 공정 개선이 시급하게 되었다. 특히 기존의 제천 공장이나 석유화학 공장 등에서 배출하였던 가연성 악취 공해 부생가스들은 재처리를 의무화하고 있어 이를 효율적으로 이용 또는 처리할 수 있는 공정 개선이 꼭 필요하다.(중략)

  • PDF

바이오 에탄올의 원료 - 일대작물 카사바의 대규모 농장과 전망

  • Yun, Sil
    • 식품문화 한맛한얼
    • /
    • v.1 no.4
    • /
    • pp.97-101
    • /
    • 2008
  • 바이오과학기술(BT)과 연관된 첨단기술 용어로 '클린 에너지', '차세대 에너지원', '바이오 연료 에탄올', '에너지 농장' 등의 말이 경쟁하듯 등장하고 있다. 원유를 대신 할 연료를 생물자원에서 얻는다고 하여 '바이오 유전개발'이라는 말도 쓰인다. 바이오 자원을 이용하여 에탄올을 생산하려는 바이오 정유공장(Bio refinery plant) 사업은 유전개발 못지 않은 미래 산업으로 대두되고 있다. 한국의 몇몇 기업은 바이오 정유공장의 원료로 사용할 뿌리작물 카사바를 열대지역 제3국가에서 대량 재배하려는 계획을 추진하고 있다.

  • PDF

A Proposal for Role and Mission of Chemical Engineering Professional Engineer in Pint Engineering Industry in the 21st Century (21세기 플랜트엔지니어링 산업에 있어서의 화공기술사의 기대와 역할)

  • 차순철
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.5
    • /
    • pp.28-32
    • /
    • 2000
  • It is about time for Korean plant engineering industry to evaluate what they have achieved in the past and to foresee how this industry will change in the future. Since the IMF infection in the late 1997, Korean engineering industry has become to realize how important it is to formulate plans and solutions in order to be successful in the EPC industry. Korean plant engineering has accomplished remarkable growth in terms of its sales volumes and sizes of petrochemical & refinery plants they have executed, but unfortunately they have not done a nice job of generating sufficient profits. Many Korean engineering companies have carried out million and billion dollars of "projects" where they unfortunately suffered deficits, and as a result, some companies actually went deteriorated and were merged, and acquired by bigger companies. Based on above philosophy, the ten(10) key factors are suggested regarding a proposal for role and mission of chemical engineering professional engineer in plant engineering industry in the 21\\\" century.

  • PDF

A Study on Development and Implementation of Risk Based Inspection Software to a Petrochemical Plant (RBI 소프트웨어 개발 및 국내 석유화학 플랜트에의 적용사례)

  • Shim, Sang-Hoon;Han, Sang-In;Yoon, Kee-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.598-603
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBI for RBI based on the API 581 code was developed and a quantitative analysis was performed for over 500 equipments in a domestic plant whose operating time reaches about 13 years. Current risks for each equipment parts were evaluated and risk based prioritization were determined as a conclusion.

  • PDF

Effects of Ambient Ozone Levels on Rice Yield (자연대기수준의 오존농도가 동진벼의 수량에 미치는 영향)

  • 허재선;이충일
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.720-724
    • /
    • 1998
  • Open-top field chamber study was carried out to investigate effect of ambient ozone level on the yield of rice cultivar 'Dongjin' in Kwangyang area located in the vicinity of the industrial complex of Yechon petrolium refinery and chemical works or Kwangyang Iron and Steel works during the summer of 1997. mean ozone concentration of ambient air during daytime (9:00∼17:00) was revealed to exceed over 40 ppb which is defined to be a critical level causing plant injury and yield reduction in Europe. Yield component analysis showed that there was no significant difference in rice yield between ambient air and charcoal-filtered air. The results suggest that the ambient ozone levels during the exposure period had no effect on yield reduction of rice cultivar 'Dongjin' and it is likely that the cultivar is tolerant to ambient ozone levels.

  • PDF

Influences of CYP2E1 Gene Polymorphism on the Metabolism of Benzene (벤젠 대사에 있어서 CYP2E1유전자다형성의 영향)

  • 정효석;김기웅;장성근
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.325-330
    • /
    • 2002
  • In this study, the biochemical role of genetic polymorphism in modulating urinary excretion of benzene metabolite as phenol level has been investigated in 90 workers exposed to benzene in the petroleum refinery plant of Korea. The mean concentration of volatile benzene in the refinery environment was 0.042 mg/㎥ (SD, 0.069) and that of urinary phenol was 7.42 mg/g creatinine (SD, 11.3). The frequencies of CYP2E1 genotypes, namely CYP2E1$^*1$/$^*1$, CYP2E1$^*1$/$^*2$ and CYP2E1$^*2$/$^*2$ were 2.2% (2 subjects), 6.7% (G subjects) and 91.1% (85 subjects), respectively, and allele frequencies for CYP2E1$^*1$ and CYP2E1$^*2$ were 0.06 and 0.94. The airborne benzene concentration was significantly related to the concentration of phenol in urine (r = 0.640, p < 0.01). The urinary phenol level was significantly correlated with CYP2E1$^*2$/$^*2$ (r = 0.590, p < 0.05). The various biological (i.e. age and liver function parameters) or lifestyle factors (i.e. medication, smoking, alcohol and coffee intake), also taken into account as potential confounders, did not influence the correlation found. These results suggested that CYP2E1 genotypes might play an important role in the metabolism of benzene.

A Study on Implementation of Risk Based Inspection Procedures to a Petrochemical Plant (RBI 절차의 석유화학 플랜트 적용에 관한 연구)

  • Song, Jung-Soo;Shim, Sang-Hoon;Kim, Ji-Yoon;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBl for RBI based on the API 581 code was developed. This software has modules for evaluating qualitative and semi-quantitative risk level, analyzing quantitative risks using the potential consequences of a failure of the pressure boundary, and assessing the likelihood of failure. A quantitative analysis was performed for 16 columns in a domestic NCC (Naphtha Cracking Center) plant whose operating time reaches about 12 years. Each column was considered as two equipment parts by dividing into top and bottom. Generic column failure frequencies were adjusted based on likelihood data. After determining release rate, release duration and release mass for each failure scenario, flammable/explosive and toxic consequences were assessed. Current risks for 32 equipment parts were evaluated and risk based prioritization were determined as a final result.