• Title/Summary/Keyword: Refinement behavior

Search Result 129, Processing Time 0.036 seconds

Elegance Expressed on Dress as an Aesthetic Concept (복식에 표현된 미적 개념으로서의 엘레강스)

  • 고현진;김민자
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.5
    • /
    • pp.95-107
    • /
    • 2004
  • Elegance in dress has existed as one of the important archetypes of aesthetic consciousness through the times. Nevertheless, there has generally been Ignored the Idea of analyzing it. The purpose of this study is to provide a framework for a better understanding of the beauty of dress by constructing the concept of elegance in dress as both one of aesthetic categories in dress and refined taste in the sociocultural contexts. For the purpose, the documentary study in sociocultural and aesthetic contexts has been executed. Considering from the holistic viewpoint, elegance in dress is based upon the idea of aristocratic taste cultivated by good breeding. It is expressed visually through not only the carefully contrived dress hut also a sort of aura of dressed body - a combination of appearance, behavior, attitude, manner etc.- with skillful ease. The aesthetic values of elegance consist of luxury, nobility, refinement, femininity, harmony Luxury means rarity and opulence of materials, craftsmanship for excellent qualities, genuineness. Nobility, related to the lady and the gentleman, can be explained as neatness. decency. modesty. and appropriateness for formal occasions. Refinement involves artifice, sophistication, maturity, and subtleness. Femininity reflects the characteristic of feminine attractiveness such as the dainty, the florid, the sweet. Harmony means organic unity. matching with body, moderation in opposition to exaggeration. These values has rather interactivity than exclusion. It is refinement and harmony that are centered on of all values.

Structure Refinement and Equation of State Studies of the Exsoluted Ilmenite-Hematite (티탄철석-적철석 용출시료의 구조분석과 상태방정식 연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • Exsolution intergrowth of ilmenite and hematite was studied by the Rietveld refinement method. According to the analysis on these two structural analog minerals, it was found that octahedron (M2) of Ti in ilmenite is in the least deformation, then that (M1) of Fe in ilmenite is deformed next, and octaheron deformation of Fe in hematite is between M1 and M2. High pressure compression experiment was performed up to 5.8 GPa, where two minerals' XRD peaks merged completely. Ilmenite shows normal compression behavior, whereas hematite shrinks in very small amount. This kind of abnormal behavior might be due to the differential response to the applied pressure corresponding to the different compressibilities of the minerals each other.

Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM) (고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동)

  • Song, Joon-Woo;Kim, Hyo-Seob;Kim, Hong-Moule;Kim, Taek-Soo;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

Transformation Behavior on Heat Treatment Condition in Grain-Refined Cu-Zn-Al Shape Memory Alloy (결정립 미세화된 Cu-Zn-Al 형상기억합금의 열처리 조건에 따른 변태거동)

  • Kang, J.W.;Jang, W.Y.;Yang, G.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.34-43
    • /
    • 1991
  • A small amount of misch metal and/or Zr was added as a dopant to 70.5wt----Cu-26wt----Zn-3.5wt----Al shape memory alloy in order to study the effect of grain refinement and heat treatments on the transformation behavior, stabilization of martensite, and shape memory ability. It was found that the addition of misch metal and Zr was very effective for reducing the grain size. The fracture mode has been changed from intergranular brittle fracture to ductile fracture with void formation and coalescence by the addition of misch metal and Zr. Aging of the ${\beta}$-phase decreases the $M_s$ temperature, but that of the martensite phase increases the $A_s$ temperature. The hysteresis of transformation temperature ${\Delta}T(A_s-M_s)$ has an increasing tendancy by grain refinement. The crystal structure of martensite was identified as monoclinic structure. As the grain size decreased, martensite stabilization more easily occured and the shape, memory ability has been reduced by the grain size refined.

  • PDF

Microstructural evolution and mechanical properties of TiC-Mo2C-WC-Ni multi-component powder by high energy ball milling

  • Jeong-Han Lee;Hyun-Kuk Park
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.5
    • /
    • pp.590-596
    • /
    • 2021
  • The widespread use of TiC-based cermets as cutting tools, thin-film, ultracapacitors, nozzles, and bearings is primarily due to exhibit combination of excellent mechanical properties such as low density, high hardness, and stiffness. The TiC cermets were synthesized by high energy ball milling, which includes binder metal (Ni), carbides (WC and Mo2C), wherein the present study focus on the relationship between the core-rim structure, phase constitution, and mechanical properties. Here, using in situ TEM, we clearly observed the behavior of adjacent core-rim formation from the solid-phase reaction with grain refinement of the TiC phase control of both the milling time and lattice formation. Also, we proposed that mechanically alloyed core-rim structure can affect oxidation resistance of TiC-Mo2C-WC-Ni cermets strongly related to activation energy attributed to TiC particle size. The mechanical properties of TiC-Mo2C-WC-Ni cermets suggest the hardening effect is not considered only grain refinement, but rather is solid solution strengthening and particle-dispersion hardening. The present study paves the relation to the formation behavior of both TiC hard phase and core-rim structure due to the mechanical powder synthesis of novel TiC-based cermets.

Analysis of Microstructural Refinement for Inconel 706 during Hot Forging Process through Reheating and Strain (Inconel 706의 열간단조 공정 중 재가열과 변형양에 따른 결정립 미세화에 대한 분석)

  • S. G. Seong;H. J. Kang;Y. S. Lee;S. Y. Lee;U. J. Lee;H. I. Jae;J. H. Shin;E. Y. Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.239-246
    • /
    • 2023
  • To reduce the forming load due to the temperature drop, during the hot forging process, a reheating hot forging process design is required that to repeat heating and forging. However, if the critical strain required for recrystallization is not induced during forging and grain growth becomes dominant due to the reduction in dislocation density due to repeated heating, the mechanical properties may deteriorate. Therefore, in this study, Inconel 706 alloy was applied, and the grain refinement behavior was comparatively analyzed according to the number of reheating times and effective strain during reheating hot forging process. Reheating was carried out with a total compression rate of 40% up to 4 times. The Inconel 706 compression test specimens heated once showed finer grains as the effective strain increased due to the dynamic recrystallization phenomenon. However, as the number of heating increases, grain refinement was observed even in a low effective strain distribution of 0.43 due to static recrystallization during reheating. Moreover, grain growth occurs at a relatively low effective strain of 0.43 when the number of reheating is four or more. Therefore, it was effective to apply an effective strain of 0.43 or more during hot forging to Inconel 706 in order to induce crystallization through grain refinement and improve the properties of forged products. In addition, we could notice that up to three reheating times condition was appropriate to prevent grain growth and maintain fine grain size.

Finite Element Analysis of Seismic Isolation Bearing (면진베어링 유한요소해석)

  • Lee, Jae-Han;Yoo, Bong;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.45-51
    • /
    • 1996
  • The combined shear and compression behaviors of seismic isolation rubber bearings are analyzed using the hyperelasticity material option of the ABAQUS computer program. The purpose of the analysis is to predict the behavior of laminated rubber bearing before the several tests. Some kinds of strain energy density functions are used as constitutive law for rubber itself having the hyperelasticity. The results are compared with test data peformed in Italy The analysis results show a little different with experimental results depending on the constitutive model and the refinement of finite element. The high order form of strain energy density functions results in good agreements and the mesh refinement above two for one rubber layer is enough to get good results.

  • PDF

High Temperature Deformation Characteristics (STS 430 고온변형 특성에 관한 연구)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF

Buckling Analysis of Box-typed Structures using Adaptive Finite Elements (적응적 유한요소를 이용한 박스형 구조물의 좌굴해석)

  • Song, Myung-Kwan;Kim, Sun-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.271-274
    • /
    • 2007
  • The finite element linear buckling analysis of folded plate structures using adaptive h-refinement methods is presented in this paper. The variable-node flat shell element used in this study possesses the drilling D.O.F. which, in addition to improvement of the element behavior, permits an easy connection to other elements with six degrees of freedom per node. The Box-typed structures can be analyzed using these developed flat shell elements. By introducing the variable node elements some difficulties associated with connecting the different layer patterns, which are common in the adaptive h-refinement on quadrilateral mesh, can be overcome. To obtain better stress field for the error estimation, the super-convergent patch recovery is used. The convergent buckling modes and the critical loads associated with these modes can be obtained.

  • PDF