• Title/Summary/Keyword: Reference wind speed

Search Result 141, Processing Time 0.031 seconds

Calculation of Vertical Wind Profile Exponents and Its Uncertainty Evaluation - Jeju Island Cases (풍속고도분포지수 산정 및 불확도 평가 - 제주도 사례)

  • Kim, You-Mi;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-yeol;Kim, Jin-Young;Kim, Chang Ki;Kim, Shin-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.11-20
    • /
    • 2016
  • For accurate wind resource assessment and wind turbine performance test, it is essential to secure wind data covering a rotor plane of wind turbine including a hub height. In general, we can depict wind speed profile by extrapolating or interpolating the wind speed data measured from a meteorological tower where multiple anemometers are mounted at different heights using a power-law of wind speed profile. The most important parameter of a power-law equation is a vertical wind profile exponent which represents local characteristics of terrain and land cover. In this study, we calculated diurnal vertical wind profile exponents of 8 locations in Jeju Island who possesses excellent wind resource according to the GUM (Guide to the Expression of Uncertainty in Measurement) to evaluate its uncertainty. Expanded uncertainty is calculated by combined standard uncertainty, which is the result of composing type A standard uncertainty with type B standard uncertainty. Although pooled standard deviation should be considered to derive type A uncertainty, we used the standard deviation of vertical wind profile exponent of each day avoiding the difficult of uncertainty evaluation of diurnal wind profile variation. It is anticipated that the evaluated uncertainties of diurnal vertical wind profile exponents at 8 locations in Jeju Island are to be registered as a national standard reference data and widely used in the relevant areas.

The Wind Resource Database KIER-WindJeju (제주도 풍력자원 데이터베이스 KIER-WindJeju)

  • Kim, Hyun-Goo;Lee, Jong-Nam;Jang, Moon-Seok;Kyong, Nam-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.420-422
    • /
    • 2007
  • In order to support wind power development in Jejudo, the island of winds, the wind resource database KIER-WindJeju has been established by meteor-statistical analysis on met-mast measurements of KIER. The analysis includes tower shading, exposure category, wind profile exponent for wind speed extrapolation to hub height of wind turbine, and correlation matrix between neighboring sites to assist choice of appropriate reference site for long-term correlation. KIER-WindJeju will be provided as an add-on of Google $Earth^{TM}$ and will be used as a guideline of future wind resource assessment in Jejudo.

  • PDF

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.

A Study on Load Evaluation and Analysis for Foundation of the Offshore Wind Turbine System (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Dae-Yong;Park, Hyun-Chul;Chung, Chin-Wha;Kim, Yong-Chun;Lee, Seung-Min;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind energy is getting more attention in recent years. Among all the components of offshore wind turbines, the foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, the 5 MW NREL reference wind turbine with rated speed of 11.4 m/s is used for load calculation. Wind and wave loads are calculated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is to simulate systemic and optimized load cases for the foundation analysis of wind turbine system.

Meteorological events causing extreme winds in Brazil

  • Loredo-Souza, Acir M.
    • Wind and Structures
    • /
    • v.15 no.2
    • /
    • pp.177-188
    • /
    • 2012
  • The meteorological events that cause most strong winds in Brazil are extra-tropical cyclones, downbursts and tornadoes. However, one hurricane formed off the coastline of southern Brazil in 2005, a tropical storm formed in 2010 and there are predictions that others may form again. Events such as those described in the paper and which have occurred before 1987, generate data for the wind map presented in the Brazilian wind loading code NBR-6123. This wind map presents the reference wind speeds based on 3-second gust wind speed at 10 m height in open terrain, with 50-year return period, varying from 30 m/s (north half of country) to 50 m/s (extreme south). There is not a separation of the type of climatological event which generated each registered velocity. Therefore, a thunderstorm (TS), an extra-tropical pressure system (EPS) or even a tropical cyclone (TC) are treated the same and its resulting velocities absorbed without differentiation. Since the flow fields generated by each type of meteorological event may be distinct, the indiscriminate combination of the highest wind velocities with aerodynamic coefficients from boundary layer wind tunnels may lead to erroneous loading in buildings.

A study on load evaluation and analysis for foundation of the offshore wind turbine system (해상풍력 하부구조물 하중영향평가 및 해석기술연구)

  • Kwon, Daeyong;Park, Hyunchul;Chung, Chinwha;Kim, Yongchun;Lee, Seungmin;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • With growing of wind turbine industry, offshore wind turbine system is getting more attention in recent years. Foundation of the offshore wind turbine plays a key role in stability of whole system. In this work, 5MW NREL reference wind turbine with rated speed of 11.4m/s is used for load calculation. Wind loads and wave loads are evaluated using GH-Bladed (Garard Hassan) and FAST (NREL). Additionally, FE simulation is carried out to investigate the wave effect on the support structure. Meanwhile, this work is trying to systematize and optimize load cases simulation for foundation of wind turbine system.

  • PDF

Short-term Wind Farm Power Forecasting Using Multivariate Analysis to Improve Wind Power Efficiency (풍력발전 설비 효율화를 위한 다변량 분석을 이용한 풍력발전단지 단기 출력 예측 방법)

  • Wi, Young-Min
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.54-61
    • /
    • 2015
  • This paper presents short-term wind farm power forecasting method using multivariate analysis and time series. Based on factor analysis, the proposed method makes new independent variables which newly composed by raw independent variables such as wind speed, ramp rate, wind power. Newly created variables are used in the time series model for forecasting wind farm power. To demonstrate the improved accuracy, the proposed method is compared with persistence model commonly used as reference in wind power forecasting using data from Jeju Island. The results of case studies are presented to show the effectiveness of the proposed forecasting method.

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.

External Wind Noise Source Identification in Hyundai Aeroacoustic Wind Tunnel (현대 자동차 무향 풍동에서의 외부 소음원 파악 기술)

  • 정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.34-40
    • /
    • 2001
  • Aeroacoustic technology to improve the acoustic comfort in high-speed became a major topic in vehicle development process. Although most of wind noise reduction and sound quality improvements are possible with full vehicle, the countermeasures should be applied at the early design stage. Acoustic holography technology was used to identify the external wind noise sources of a vehicle in Hyundai Aeroacoustic Wind Tunnel. Microphone self-noise reduction techniques and several reference microphone positions are investigated in order to obtain proper results.

  • PDF

Evaluation of Wind load Safety for Single G-type Greenhouse Using Korean Design Standard (건축구조기준을 활용한 농가지도형 G형 비닐하우스의 풍하중 안전성 평가)

  • Lee, Woogeun;Shin, Kyungjae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • Plastic greenhouses are simple structures consisting of lightweight materials such as steel pipes and polyvinyl chloride. However, serious damage occurs due to heavy winds and typhoon every year. To prevent a collapse of structural members, the Ministry of Agriculture and Rural Development has distributed plans and specifications for disaster-resistant standards. Despite these efforts, more than 50% of greenhouses still do not satisfy the disaster-resistant standards. Among the greenhouses that do not meet these standards, 85% are single-span greenhouses proposed 20 years ago. Consequently, there is a need to evaluate the safety of wind loads for the single-span greenhouse. Unfortunately, there are no design specifications for the greenhouses under wind loads. Therefore, a Korean design standard (KDS) has been utilized. KDS is defined with reference to wind speeds occurring once every 500 years, raising concerns about potential overdesign when considering the durability of plastic greenhouses. To address this, the modified wind load, considering the durability of the plastic greenhouse, was calculated, and a safety evaluation was conducted for sigle G-type plastic greenhouse. It was observed that the moment acting on the windward surface was substantial, and there was a risk of the foundation being pulled out if the basic wind speed exceeded 32 m/s. In terms of the combination strength ratio, it was less than 1.0 only on the leeward side when the basic wind speed was 24 m/s and 26 m/s. However, in all other cases, it exceeded 1.0, indicating an unsafe condition and highlighting the necessity for reinforcement.