• 제목/요약/키워드: Reference trajectory

검색결과 260건 처리시간 0.028초

외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선 (Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer)

  • 김홍철;임훈;이장명
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF

DSP를 이용한 직접구동형 AC모터 위치제어기의 설계 (Design of Direct Drive AC Motor Position Controller Using DSP)

  • 박성언;김갑일;이광무;이창섭;장태성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.846-848
    • /
    • 1995
  • Recently, direct drive AC servo motor and DSP is widely used in the factory automation and related field due to the enhanced control and digital technology. In this paper, position control of direct drive AC servo motor and numerical interpolation algorithms are studied using DSP for the future applications. In the direct drived motor control, encoder pulse is divided into the quadruple pulse for the higher resolution and high speed pulse(10MHz) is used as reference for the slower speed motor control (M/T method). As for the general position control, PI controller is adapted for position control. In the trajectory tracking numerical algorithm, interpolation of straight line and curve algorithms are studied for the realization of path following capabilities of XY table. As for the DSP, ADSP 2105 is selected for the economy and performance points of view.

  • PDF

A Gyro-Free INS Algorithm in the Navigation Frame and Its Application to the Spinning Vehicle with High Rotation Rate

  • Lee, Junhak;Kim, Heyone;Oh, Sang Heon;Do, Jae Chul;Nam, Chang Woo;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권2호
    • /
    • pp.91-103
    • /
    • 2018
  • Conventional inertial measurement units cannot be used in the spinning vehicle with high rotation rate due to gyro's narrow operation range. By the way, angular acceleration can be measured using the accelerometer array distributed in the vehicle. This paper derives a mechanization for the gyro-free INS in the navigation frame, and proposes a gyro-free INS algorithm based on the derived mechanization. In addition, the proposed algorithm is used to estimate angular velocity, attitude, velocity, and position of a spinning vehicle with high rotation rate. A MATLAB-based software platform is configured in order to show validation of the proposed algorithm. The reference trajectory of a spinning vehicle at 3 round per second, 30 round per second are set up, and the outputs of accelerometer are generated when triads of accelerometer are located at the origin and all the axes. Navigation results of the proposed algorithm for the generated output are presented. The results show that the proposed navigation algorithm can be applied to the spinning vehicle with high rotation rate.

차량 횡방향 안정성 향상을 위한 모델 참조 제어와 맵기반 제어 방법의 제어 성능 비교 (Control Performance Comparison of Model-referenced and Map-based Control Method for Vehicle Lateral Stability Enhancement)

  • 윤문영;백승환;최정광;부광석;김흥섭
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.253-259
    • /
    • 2014
  • This study proposes a map-based control method to improve a vehicle's lateral stability, and the performance of the proposed method is compared with that of the conventional model-referenced control method. Model-referenced control uses the sliding mode method to determine the compensated yaw moment; in contrast, the proposed map-based control uses the compensated yaw moment map acquired by vehicle stability analysis. The vehicle stability region is calculated by a topological method based on the trajectory reversal method. The performances of model-referenced control and map-based control are compared under various road conditions and driving inputs. Model-referenced control uses a control input to satisfy the linear reference model, and it generates unnecessary tire lateral forces that may lead to worse performance than an uncontrolled vehicle with step steering input on a road with low friction coefficient. The simulation results show that map-based control provides better stability than model-referenced control.

외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어 (Center of Mass Compliance Control of Humanoid Using Disturbance Observer)

  • 박경재;김명주;박재흥
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계 (Design of a real time adaptive controller for industrial robot using TMS320C31 chip)

  • 한성현;김용태;이만형;김성권;김진오
    • 한국정밀공학회지
    • /
    • 제13권10호
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

학습제어를 이용한 지게차 자동변속기 상향 변속품질 개선 (An Upshift Improvement in the Quality of Forklift's Automatic Transmission by Learning Control)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권2호
    • /
    • pp.17-26
    • /
    • 2022
  • Recently, automatic transmissions caused a good improvement in the shift quality of a forklift. An advanced shift control algorithm, which was based on TCU firmware, was applied with embedded control technology and microcontrollers. In the clutch-to-clutch shifting, one friction element is released and the other friction element is activated. During this process, if the release and application timings are not synchronized, an overrun or tie-up occurs and ultimately leads to a shift shock. The TCU, which measures only the speed of the forklift, inevitably applies the open-loop shift control. In this situation, the speed ratio does not change during the clutch fill. The torque phase occurs until the clutch is disengaged. In this study, an offline shift logic of the learning control was proposed. It induced a synchronous shift when the learning control progressed. During this process, the reference current trajectory of the release clutch was corrected and applied to the next upshift. We considered the results of the overrun/tie-up characteristics of the upshift performed immediately before. The vehicle test proved that the deviation in shift quality, which was caused by the difference in the mechanical characteristics of the clutch, could be improved by the learning control.

태권도 주춤 서 몸통지르기 유형별 생체역학적 변인 비교 분석 (A Biomechanical Analysis of Four Different Taekwondo Body Punch Types in Horseback-Riding Stance)

  • 강성철;김의환;신현무;김성섭;김태완
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.201-208
    • /
    • 2007
  • The purpose of this study is to compare 4 different body punch types(type 1: a punch using a shoulder, type 2: a punch using a waist, type 3: a punch using lower extremities, and type 4: a punch with elbows by your side at chest level) in horseback-riding stance and establish suitable teaching theory and method, which would be a useful reference to Taekwondo instructors on the spot(in Taekwondo dojangs all around Korea). Five exhibition players from Korean national Taekwondo exhibition team participated in this study. Each participant was asked to perform the four different types of punches and their kinematic and kinetic data were recorded with 7 vicon cameras(125Hz) and two force plates(AMTI, 1200Hz). We analyzed displacement, time, resultant center of body mass trajectory, velocity, trunk angular velocity, and ground reaction force(GRF) from each body segment in body punch and the result. I performed 1-way ANOVA(RM) for average values of each player after standardization and statistical significance was set as p<.05. was as the following ; First, they showed a tendency to take the body punch posture with the biggest motion at a shoulder and on descending order a waist and a knee. Second, a mean time for each body punch on ascending order 0.46sec. for type 2, 0.49sec for type 3, 0.50sec. for type 4, and 0.56sec. for type 1. Third, a mean resultant center of body mass trajectory for each body punch the longest 4.07cm for type 3 and the shortest 2.458cm for type 1. Fourth, a mean of maximal velocity of a fist strike was the fastest 5.99m/s for type 3, 5.93m/s for type 4, 5.67m/s for type 2, and 5.01m/s for type 1 on the descending order. Fifth, a mean of maximal trunk angular velocity of the fastest 495.6deg./sec. for type 4 and 337.7deg./sec. for type 1 on the descending order. Sixth, strongest value was type 3, 2 for anterior-posterior ground reaction force(left -54.89N, right 60.58N), type 4 for medial-lateral GRF(left 83.59N, right -80.12N), and type 3 for vertical GRF(left 341.79N, right 426.11N).

서포트 벡터 머신을 이용한 완도 인근해역 추천항로 개선안에 관한 연구 (A Study on the Improvement of Recommended Route in the Vicinity of Wando Island using Support Vector Machine)

  • 유상록;정초영
    • 한국항해항만학회지
    • /
    • 제41권6호
    • /
    • pp.445-450
    • /
    • 2017
  • 항로 설정은 통항 선박들의 안전을 위해 교통 흐름을 반영할 필요가 있으며, 선박들이 항로를 잘 준수하는지 지속적인 경과 분석이 필요하다. 본 연구에서는 완도항 인근해역 추천항로의 문제점을 도출하고 이에 대한 개선안을 제시하였다. 효율적인 항로 중앙선을 설정하기 위해 선박 항적을 기반으로 서포트 벡터 머신을 이용하였다. 추천항로 중앙선을 기준으로 우측으로 항해해야 하므로 통항 선박들의 항적이 2개의 군집으로 분할된다. 서포트 벡터 머신은 패턴 인식 등 많은 분야에서 이용되고 있으며, 특히 이진 분류 기능이 뛰어나다. 연구 결과 장죽수도 방향의 2.4 NM 추천항로 구간에서 동진하는 상선은 약 79.5%가 추천항로를 준수하지 않는 것으로 나타나 선박 충돌 사고 위험이 상존하는 것을 확인하였다. 추천항로를 현 위치에서 북쪽으로 약 300 m 재설정할 경우, 동진하는 상선은 항로를 역주행할 비율이 79.5%에서 30.9%로 낮아지는 것으로 나타났다. 본 연구에서 적용한 서포트 벡터 머신은 선박 항적을 두 군집으로 분류가 가능하므로 항로 중앙선을 효과적으로 설정하는데 응용할 수 있을 것으로 기대된다.

AHRS를 이용한 피겨스케이팅 기본 동작 인식 (Recognition of Basic Motions for Figure Skating using AHRS)

  • 권기현;이형봉
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.89-96
    • /
    • 2015
  • IT 기술이 생체역학 분야와 폭넓게 접목되고 있으며 AHRS 센서가 스포츠 모션분석 분야에 소형화 및 가격 경쟁력 측면에서 조명을 받고 있다. 본 논문에서는 피겨스케이트화에 소형의 AHRS 센서를 부착하고, 스핀(spin), 점프, 전/후진, 인/아웃 에지, 토(toe) 등의 기본 동작을 AHRS를 통해 측정한다. AHRS 센서의 측정 오차를 줄이기 위해 Madgwick의 상보필터를 적용하였으며, 짐벌락 현상(Gimbal Lock)을 줄이기 위해 쿼터니언(Quaternion)을 이용하였다. 취득한 9축 궤적 정보에 대해 PCA, ICA, LDA, SVM의 패턴인식 알고리즘을 적용하여 인식정확도 및 실행시간을 구하고, 여러 패턴인식 알고리즘 중에서 어떤 알고리즘이 인식정확도 및 실행시간 측면에서 적용이 가능한지 제시한다. 실험결과, PCA, ICA는 인식정확도가 낮아 사용하기에 부적합하며 LDA, SVM은 인식정확도가 우수하여 피겨스케이팅 기본 동작 인식에 사용이 적합함을 보인다.