• Title/Summary/Keyword: Reference station

Search Result 494, Processing Time 0.024 seconds

Molecular Identification of Trichogramma (Hymenoptera: Trichogrammatidae) Egg Parasitoids of the Asian Corn Borer Ostrinia furnacalis, Based on ITS2 rDNA Sequence Analysis (ITS2 rDNA 염기서열 분석을 통한 Trichogramma 속(벌목: 알벌과)의 조명나방 알기생벌에 대한 종 추정)

  • Seo, Bo Yoon;Jung, Jin Kyo;Park, Ki Jin;Cho, Jum Rae;Lee, Gwan-Seok;Jung, Chung Ryul
    • Korean journal of applied entomology
    • /
    • v.53 no.3
    • /
    • pp.247-260
    • /
    • 2014
  • To identify the species of Trichogramma occurring in the corn fields of Korea as egg parasitoids of Ostrinia furnacalis, we sequenced the full-length of ITS2 nuclear rDNA from 112 parasitoids collected during this study. As a reference to distinguish species, we also retrieved full-length ITS2 sequences of 60 Trichogramma species from the NCBI GenBank database. On the basis of the size and 3'terminal sequence pattern of the ITS2 sequences, the Trichogramma samples collected in this study were divided into three groups (K-1, -2, and -3). Evolutionary distances (d) within and between groups based on ITS2 sequences were estimated to be ${\leq}0.005$ and ${\geq}0.080$, respectively. In the net average distance between groups or species, the d value between K-1 and T. ostriniae, K-2 and T. dendrolimi, and K-3 and T. confusum was the lowest, with values of 0.016, 0.001, and 0.002, respectively. In the phylogenetic tree, K-1 and K-2 were clustered with T. ostriniae and T. dendrolimi, respectively. However, K-3 was clustered with three different species, namely, T. confusum, T. chilonis, and T. bilingensis. NCBI BLAST results revealed that parasitoids belonging to K-1 and K-2 showed 99% identity with T. ostriniae and T. dendrolimi, respectively. Parasitoids in K-3 collected from Hongcheon showed 99-100% identity with T. confusum and T. chilonis, and one parasitoid in K-3 collected from Gochang had 98% identity with T. bilingensis, T. confusum, and T. chilonis. On the basis of these results, we infer that the species of Trichogramma collected in this study are closely related to T. ostriniae (K-1) and T. dendrolimi (K-2). However, it was not possible to distinguish species of K-3 using the ITS2 sequence alone.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

Influences of Air Pollution on the Growth of Ornamental Trees - With Particular Reference to SO2 - (대기오염(大氣汚染)이 조경수목(造景樹木)의 생육(生育)에 미치는 영향(影響) - 아황산(亞黃酸)가스에 대(對)하여 -)

  • Kim, Tae Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.29 no.1
    • /
    • pp.20-53
    • /
    • 1976
  • For the purpose of detecting the capability of the trees to resist air pollution and of determining the tree species best suited for purification of polluted air, particularly with regard to $SO_2$ contamination, six following ornamental tree species were selected as experimental materials: i.e., Hibiscus syriacus L., Ginkgo biloba L., Forsythia koreana Nak., Syringa dilatata Nak., Larix leptolepis Gordon, and Pinus rigida Miller. The susceptiblities of the trees were observed and analyzed on the basis of area ratio of smoke injury spots to the total leaf area. The results of the experiments are as follows: I. The Susceptibilities to Sulfur Dioxide. (1) The decreasing order of tolerance to $SO_2$ by species was as follows: 1. Hibiscus syriacus 2. Ginkgo biloba, 3. Forsythia koreana, 4. Syringa dilatata, 5. Larix leptolepis, and 6. Pinus rigida. In general, Hibiscus syriacus and Ginkgo biloba can be grouped as the most resistant and Larix leptolepis and Pinus rigida as the least resistant and Forsythia koreana and Syringa dilatata as of intermediate resistance. (2) The sulfur content of the leaves treated by $SO_2$ increased in proportion to the increase of the concentration of the fumigation. The content in the coniferous species proved to be less than that of the broad-leaved species, but Ginkgo biloba proved to contain as much sulfur as broad-leaved species. (3) The earlier-stage leaves fumigated in June with the $SO_2$ concentration up-to-l-ppm showed that sulfur content increases in proportion to the increase of the concentration of the fumigation, but the difference between concentration was not so significant. (4) The later-stage leaves fumigated in October showed higher sulfur content than the earlier stage leaves, and a wider range of difference in sulfur content was detected among different concentrations. The limit of fumigation resulting in culmination of sulfur absoption in broad-leaved species, such as Syringa dilatata, Hibiscus syriacus, and Forsythia koreana proved to be around 0.6 ppm. (5) Due to the sprouting ability and the adventitious bud formation, the recovery from $SO_2$ fumigation was prominent in Hibiscus syriacus, Syringa dilatata, and Forsythia koreana. (6) The differences in the smoke spot color were recognized by species: namely, dirt-brown in Syringa dilatata, brilliant yellowish-brown in Pinus rigida and Ginkgo biloba, whitish-yellow in Hibiscus syriacus and reddish-brown in Forsythia koreana. (7) The leaf margins proved to be most susceptible, and the leaf bases of the mid-rib most tolerant. In both Ginkgo biloba and Larix leptolepis, the younger leaves were more resistant to $SO_2$ than the older ones. II. The ulfur Content of the Leaves of the Ornamental Trees Growing in the City of Seoul. (1) The sulfur contents in the leaves of the Seoul City ornamental trees showed a remarkably higher value than those of the leaves in the non-polluted areas. The sulfur content of the leaves in the non-polluted area proved to be in the following descending order: Salix pseudo-lasiogyne Leveille, Ginkgo biloba L., Alianthus altissima swingle, Platanus orientalis L., and Populus deltoides Marsh. (2) In respect to the sulfur contents in the leaves of the ornamental trees in the city of Seoul, the air pollution proved to be the worst in the areas of Seoul Railroad Station, the Ahyun Pass, and the Entrance to Ewha Womans University. The areas of Deogsu Palace, Gyeongbog Palace, Changdeog Palace, Changgyeong Park and the Hyehwa Intersection were least polluted, and the areas of the East Gate, the Ulchi Intersection and the Seodaemun Intersection are in the intermediate state.

  • PDF

Studies on the Varietal Difference in the Physiology of Ripening in Rice with Special Reference to Raising the Percentage of Ripened Grains (수도 등숙의 품종간차이와 그 향상에 관한 연구)

  • Su-Bong Ahn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.14
    • /
    • pp.1-40
    • /
    • 1973
  • There is a general tendency to increase nitrogen level in rice production to insure an increased yield. On the other hand, percentage of ripened grains is getting decreased with such an increased fertilizer level. Decreasing of the percentage is one of the important yield limiting factors. Especially the newly developed rice variety, 'Tongil' is characterized by a relatively low percentage of ripened grains as compared with the other leading varieties. Therefore, these studies were aimed to finding out of some measures for the improvement of ripening in rice. The studies had been carried out in the field and in the phytotron during the period of three years from 1970 to 1972 at the Crop Experiment Station in Suwon. The results obtained from the experiments could be summarized as follows: 1. The spikelet of Tongil was longer in length, more narrow in width, thinner in thickness, smaller in the volume of grains and lighter in grain weight than those of Jinheung. The specific gravity of grain was closely correlated with grain weight and the relationship with thickness, width and length was getting smaller in Jinheung. On the other hand, Tongil showed a different pattern from Jinheung. The relationship of the specific gravity with grain weight was the greatest and followed by that with the width, thickness and length, in order. 2. The distribution of grain weight selected by specific gravity was different from one variety to another. Most of grains of Jinheung were distributed over the specific gravity of 1.12 with its peak at 1.18, but many of grains of Tongil were distributed below 1.12 with its peak at 1.16. The brown/rough rice ratio was sharply declined below the specific gravity of 1.06 in Jinheung, but that of Tongil was not declined from the 1.20 to the 0.96. Accordingly, it seemed to be unfair to make the specific gravity criterion for ripened grains at 1.06 in the Tongil variety. 3. The increasing tendency of grain weight after flowering was different depending on varieties. Generally speaking, rice varieties originated from cold area showed a slow grain weight increase while Tongil was rapid except at lower temperature in late ripening stage. 4. In the late-tillered culms or weak culms, the number of spikelets was small and the percentage of ripened grains was low. Tongil produced more late-tillered culms and had a longer flowering duration especially at lower temperature, resulting in a lower percentage of ripened grains. 5. The leaf blade of Tongil was short, broad and errect, having light receiving status for photosynthesis was better. The photosynthetic activity of Tongil per unit leaf area was higher than that of Jinheung at higher temperature, but lower at lower temperature. 6. Tongil was highly resistant to lodging because of short culm length, and thick lower-internodes. Before flowering, Tongil had a relatively higher amount of sugars, phosphate, silicate, calcium, manganese and magnesium. 7. The number of spikelets of Tongil was much more than that of Jinheung. The negative correlation was observed between the number of spikelets and percentage of ripened grains in Jinheung, but no correlation was found in Tongil grown at higher temperature. Therefore, grain yield was increased with increased number of spikelets in Tongil. Anthesis was not occurred below 21$^{\circ}C$ in Tongil, so sterile spikelets were increased at lower temperature during flowering stage. 8. The root distribution of Jinheung was deeper than that of Tongil. The root activity of Tongil evaluated by $\alpha$-naphthylamine oxidation method, was higher than that of Jinheung at higher temperature, but lower at lower temperature. It is seemed to be related with discoloration of leaf blades. 9. Tongil had a better light receiving status for photosynthesis and a better productive structure with balance between photosynthesis and respiration, so it is seemed that tongil has more ideal plant type for getting of a higher grain yield as compared with Jinheung. 10. Solar radiation during the 10 days before to 30 days after flowering seemed enough for ripening in suwon, but the air temperature dropped down below 22$^{\circ}C$ beyond August 25. Therefore, it was believed that air temperature is one of ripening limiting factors in this case. 11. The optimum temperature for ripening in Jinheung was relatively lower than that of Tongil requriing more than $25^{\circ}C$. Air temperature below 21$^{\circ}C$ was one of limiting factors for ripening in Tongil. 12. It seemed that Jinheung has relatively high photosensitivity and moderate thermosensitivity, while Tongil has a low photosensitivity, high thermosensitivity and longer basic vegetative phase. 13. Under a condition of higher nitrogen application at late growing stage, the grain yield of Jinheung was increased with improvement of percentage of ripened grains, while grain yield of Tongil decreased due to decreasing the number of spikelets although photosynthetic activity after flowering was. increased. 14. The grain yield of Jinheung was decreased slightly in the late transplanting culture since its photosynthetic activity was relatively high at lower temperature, but that of Tonil was decreased due to its inactive photosynthetic activity at lower temperature. The highest yield of Tongil was obtained in the early transplanting culture. 15. Tongil was adapted to a higher fertilizer and dense transplanting, and the percentage of ripened grains was improved by shortening of the flowering duration with increased number of seedlings per hill. 16. The percentage of vigorous tillers was increased with a denser transplanting and increasing in number of seedlings per hill. 17. The possibility to improve percentage of ripened grains was shown with phosphate application at lower temperature. The above mentioned results are again summarized below. The Japonica type leading varieties should be flowered before August 20 to insure a satisfactory ripening of grains. Nitrogen applied should not be more than 7.5kg/10a as the basal-dressing and the remained nitrogen should be applied at the later growing stage to increase their photosynthetic activity. The morphological and physiological characteristics of Tongil, a semi-dwarf, Indica $\times$ Japonica hybrid variety, are very different from those of other leading rice varieties, requring changes in seed selection by specific gravity method, in milling and in the cultural practices. Considering the peculiar distribution of grains selected by the method and the brown/rough rice ratio, the specific gravity criterion for seed selection should be changed from the currently employed 1.06 to about 0.96 for Tongil. In milling process, it would be advisable to bear in mind the specific traits of Tongil grain appearance. Tongil is a variety with many weak tillers and under lower temperature condition flowering is delayed. Such characteristics result in inactivation of roots and leaf blades which affects substantially lowering of the percentage of ripened grains due to increased unfertilized spikelets. In addition, Tongil is adapted well to higher nitrogen application. Therefore, it would be recommended to transplant Tongil variety earlier in season under the condition of higer nitrogen, phosphate and silicate. A dense planting-space with three vigorous seedlings per hill should be practiced in this case. In order to manifest fully the capability of Tongil, several aspects such as the varietal improvement, culural practices and milling process should be more intensively considered in the future.he future.

  • PDF