• Title/Summary/Keyword: Reference sound source

Search Result 42, Processing Time 0.021 seconds

An Adjacency Effect in Auditory Distance and Loudness Judgments

  • Min, Yoon-Ki;Lee, Kanghee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3E
    • /
    • pp.33-39
    • /
    • 2000
  • This study investigated whether the adjacency principle. demonstrated in a perceived visual space, can be applied to auditory space. In order to demonstrate an auditory adjacency principle, multiple sound sources were varied in direction and distance in an acoustically absorbant space. Specifically, a NEAR sound source was located 10° to the left of the listener's midline at a distance of 2 meters; a FAR sound source was located 10° to the right at a distance of 5 meters. These sources served as perceptual reference points with respect to the localization of three test sounds, all at a distance of 3 meters. Two of three test sounds were directionally closer to the NEAR and FAR reference sounds, respectively. The other was between the reference sources directionally. The listener was asked to judge the perceived distances and the loudness of the three test sounds and the two reference sounds. The results indicated that the apparent distances of the test sounds were most determined by the disparity of distance between each test sound and the reference sound most directionally adjacent to it. Therefore, the findings offer evidence that the adjacency principle can be applied to the auditory space.

  • PDF

Analysis of the Sound Source Field Using Spatial Transformation of the Sound Pressure in a Near-field (근거리 음압의 공간 변환에 의한 음원의 음장 분포 해석)

  • 김원호;윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.660-669
    • /
    • 2003
  • This paper describes a theory to calculate sound source field from the spatial transform of sound field and the measured cross-power spectrum of sound pressure over a hologram plane close to a sound source, Calculating method is proposed to solve sound pressures from cross-power spectrums over a hologram plane, For this, Taylor series for the nonlinear equations is expanded, and it is calculated using Newton-Raphon method, Also, a wave number filter is used to reduce errors that is occurred on the backward propagation, and is performed numerical simulation of the circular piston sound source with infinite baffle in water to verify the proposed theory.

Development of the calibration procedure of the reference sound source and case study on the uncertainty evaluation (기준음원의 교정 절차 개발 및 불확도 평가 사례)

  • Jae-Gap Suh;Wan-Ho Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.344-350
    • /
    • 2024
  • A Reference Sound Source (RSS) is an important standard device employed in measuring sound power. The specifications of RSS is specified in international standards, and it is classified as a major calibration item in the field of acoustic metrology. Since the output power of RSS is affected by the supply voltage, each country needs to secure its own calibration service system. In this study, a procedure for calibrating a RSS is established based on the reverberant room conditions and uncertainty evaluation is conducted. Basically, the calibration procedure can apply a precision measurement process of acoustic power, and here, the measurement method using the reverberation chamber of ISO 3741 is applied. For this purpose, a measurement system is constructed, measurements are conducted with two types of RSS, and measurement uncertainty is evaluated. Through measurement examples, it is confirmed that the non-uniformity of the sound pressure distribution in the reverberation room and the volume measurement uncertainty contributed significantly to the overall uncertainty. Additionally, the influence of input voltage is experimentally examined to examine the uncertainty contribution that can be reflected in acoustic power measurements.

Localization of Rotating Sound Sources Using Beamforming Method (빔 형성 방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • 이재형;홍석호;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.837-842
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to do-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques, the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequency of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. Forward propagation method has shown better performance in locating source position than the backward propagation method.

  • PDF

A Study Absolute Position Estimation of Sound Source (3차원 음향홀로그래픽을 이용한 음원위치 추정에 관한 연구)

  • Kim, Chun-Duk;Sim, Dong-Youn;Jang, Bee;Lee, Chai-Bong;Cha, Kyung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.76-82
    • /
    • 1997
  • The paper describes simulations and experimental results using a measuring system which utilizes the acoustic holographic method in order to exactly estimate an absolute position of a sound source. The measuring surface is installed to satisfy with a far field to the sound source and is composed of linear arrayed seven microphones. A measurement is simultaneously recorded by a reference microphone setting up a neighbour sound source and the linear arrayed seven microphones which are moved to the same interval. An absolute position of sound source is estimated by the cross-spectrum method to the received sounds between a reference and the measuring microphones. Phase differences of each microphone and time delays during scanning are compensated to the reference microphone and the measuring time of the first column. An optimal interval for each microphone in the measuring surface is decided by a numerical simulation. A source signal makes use of a sinusoid, and S/N ratio is 30dB in the experiment. The optimal microphone's interval in the simulation and the experiment is decided in order to satisfy with the Nyquist space sampling condition related to the wave length of 2kHz sinusoid. Mainlobe width of a estimated 3D hologram in the case of 2kHz source signal is decreased to 87% and 30% in comparison to 500Hz and 1kHz, and then a valid of simulation results is confirmed. Therefore, we verified a utilization of the study for a sound source estimation using 3ㅇ acoustic holographic method.

  • PDF

An Experimental Study or the Prediction Method of Floor Impact Sound Insulation Performance in Apartment House Using Impedance Method(II) (임피던스법을 이용한 공동주택 바닥 충격음 차음성능 예측방법에 관한 실험 적 연구(II) - 경량 표준충격원을 중심으로 -)

  • 김재수;장길수;김선우
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 1992
  • In the previous paper, we report a practical floor impact sound level prediction method for a heavyweight impact source(Tire), soft impact source such as children jumping and running. According to these results, the calculated value and the measured value correspond comparatively well, regardless of differences in the floor structures. And the floor impact sound for a heavyweight impact source, soft source was strongly influenced by structural factors such as floor slab stiffness and peripheral support conditions. But the floor impact sound for a light impact source (Tapping machine), hard impact source was influenced by resilient layers, composed of multi-layer in floor structures. Thus, In this paper, 4 actual floor structures, all with differing resilient layers, were calculated using impedance method. When these calculation values were compared with the measured values, approximately all the values fell with one rank of the sound insulation grade, reference curve(L curve) by the JIS standard. So, a sample of measured values and calculated values from floor structures is presented to show the accuracy and appropriateness of the impedance method in domestic.

  • PDF

Sound Power Measurements Based on ISO 3741 and 3745

  • Lee, Kang-Il;Kim, Hyun-Tae;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.13-21
    • /
    • 2000
  • In this paper, we present the description and results of experimental study of the sound power measurements based on International Standards ISO 3741 and 3745. The sound power emitted by a calibrated reference sound source was measured in a reverberation room and a free field over a reflecting plane, using the precision methods of International Standards ISO 3741 direct method and ISO 3745, respectively. The sound power measurements carried out in this study give accurate estimation and also show that both methods for determining the sound power levels of a sound source in a reverberation room and a free field over a reflecting plane, according to the ISO 3741 and 3745, respectively, have proved equally good.

  • PDF

The effects of a temporal masking on the sound laterlization (시간 마스킹이 음상정위에 미치는 영향)

  • Lee, Chai-Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.352-356
    • /
    • 2010
  • In this study, it is discussed how the directional property of the sound lateralization is influenced by proceeding or succeeding tone. The acoustic source applied here is a reference sound which has 0.5 msec interaural time difference(ITD). Based on this reference sound, interfering sounds with five levels of magnitude are applied to the subjects with four kinds of inter-stimuli time intervals(ISI). The interfering sounds are also added as two different types, proceeding tone and succeeding tone. Additionally, in order to investigate a frequency influence, the reference sound and the interfering sounds are generated by using 2kHz, 4 kHz and a white noise. As a result, the influence on lateralization by proceeding tone is lager than that by succeeding tone. It can consider this result as the effect of temporal masking on lateralization. Moreover, there are small differences of masking effect on lateralization by combinations of pure tone. This result shows that the dependency of frequency domain between reference sound and interfering sound is small on the sound lateralization.

Drone Location Tracking with Circular Microphone Array by HMM (HMM에 의한 원형 마이크로폰 어레이 적용 드론 위치 추적)

  • Jeong, HyoungChan;Lim, WonHo;Guo, Junfeng;Ahmad, Isitiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.393-407
    • /
    • 2020
  • In order to reduce the threat by illegal unmanned aerial vehicles, a tracking system based on sound was implemented. There are three main points to the drone acoustic tracking method. First, it scans the space through variable beam formation to find a sound source and records the sound using a microphone array. Second, it classifies it into a hidden Markov model (HMM) to find out whether the sound source exists or not, and finally, the sound source is In the case of a drone, a sound source recorded and stored as a tracking reference signal based on an adaptive beam pattern is used. The simulation was performed in both the ideal condition without background noise and interference sound and the non-ideal condition with background noise and interference sound, and evaluated the tracking performance of illegal drones. The drone tracking system designed the criteria for determining the presence or absence of a drone according to the improvement of the search distance performance according to the microphone array performance and the degree of sound pattern matching, and reflected in the design of the speech reading circuit.

Localization of Rotating Sound Sources Using Beamforming Method (빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • Lee Jaehyung;Hong Suk-Ho;Choi Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.