• Title/Summary/Keyword: Reference phantoms

Search Result 40, Processing Time 0.022 seconds

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom ;Chansoo Choi ;Bangho Shin ;Suhyeon Kim ;Haegin Han ;Sungho Moon ;Gahee Son;Hyeonil Kim;Thang Tat Nguyen;Beom Sun Chung;Se Hyung Lee ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4698-4707
    • /
    • 2022
  • As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.

New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs)

  • Bangho Shin;Yumi Lee;Ji Won Choi;Soo Min Lee;Hyun Joon Choi;Yeon Soo Yeom
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.1949-1958
    • /
    • 2023
  • The International Commission on Radiological Protection (ICRP) Publication 116 was released to provide a comprehensive dataset of the dose coefficients (DCs) for external exposures produced with the adult reference voxel phantoms of ICRP Publication 110. Although an advanced skeletal dosimetry method for photons and neutrons using fluence-to-dose response functions (DRFs) was introduced in ICRP Publication 116, the ICRP-116 skeletal DCs were calculated by using the simple method conventionally used (i.e., doses to red bone marrow and endosteum approximated by doses to spongiosa and/or medullary cavities). In the present study, the photon and neutron DRFs were used to produce skeletal DCs of the ICRP-110 reference phantoms, which were then compared with the ICRP-116 DCs. For photons, there were significant differences by up to ~2.8 times especially at energies <0.3 MeV. For neutrons, the differences were generally small over the entire energy region (mostly <20%). The general impact of the DRF-based skeletal DCs on the effective dose calculations was negligibly small, supporting the validity of the ICRP-116 effective DCs despite their skeletal DCs derived from the simple method. Meanwhile, we believe that the DRF-based skeletal DCs could be beneficial in better estimates of skeletal doses of individuals for risk assessments.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

Properties of Water Substitute Solid Phantoms for Electron Dosimetry

  • Saitoh, Hidetoshi;Tomaru, Teizo;Fujisaki, Tatsuya;Abe, Shinji;Myojoyama, Atsushi;Fukuda, Kenichi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.255-259
    • /
    • 2002
  • To reduce the uncertainty in the calibration of radiation beams, absorbed dose to water for high energy electrons is recommended as the standards and reference absorbed dose by AAPM Report no.51 and IAEA Technical Reports no.398. In these recommendations, water is, defined as the reference medium, however, the water substitute solid phantoms are discouraged. Nevertheless, when accurate chamber positioning in water is not possible, or when no waterproof chamber is available, their use is permitted at beam qualities R$\_$50/ < 4 g/cm$^2$ (E$\_$0/ < 10 MeV). For the electron dosimetry using solid phantom, a depth-scaling factor is used for the conversion of depth in solid phantoms to depth in water, and a fluence-scaling factor is used for the conversion of ionization chamber reading in plastic phantom to reading in water. In this work, the properties, especially depth-scaling factors c$\_$p1/ and fluence-scaling factors h$\_$pl/ of several commercially available water substitute solid phantoms were determined, and the electron dosimetry using these scaling method was evaluated. As a result, it is obviously that dose-distribution in solid phantom can be converted to appropriate dose-distribution in water by means of IAEA depth-scaling.

  • PDF

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Stiffness Comparison of Tissue Phantoms using Optical Coherence Elastography without a Load Cell

  • Chae, Yu-Gyeong;Park, Eun-Kee;Jeon, Min Yong;Jeon, Byeong-Hwan;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • Mechanical property of tissue is closely related to diseases such as breast cancer, prostate cancer, cirrhosis of the liver, and atherosclerosis. Therefore measurement of tissue mechanical property is important for a better diagnosis. Ultrasound elastography has been developed as a diagnostic modality for a number of diseases that maps mechanical property of tissue. Optical coherence elastography (OCE) has a higher spatial resolution than ultrasound elastography. OCE, therefore, could be a great help for early diagnosis. In this study, we made tissue phantoms and measured their compressive moduli with a rheometer measuring the response to applied force. Uniaxial strain of the tissue phantom was also measured with OCE by using cross-correlation of speckles and compared with the results from the rheometer. In order to compare stiffness of tissue phantoms by OCE, the applied force should be measured in addition to the strain. We, however, did not use a load cell that directly measures the applied force for each sample. Instead, we utilized one silicone film (called as reference phantom) for all OCE measurements that indirectly indicated the amount of the applied force by deformation. Therefore, all measurements were based on displacement, which was natural and effective for image-based elastography such as OCE.

Radiation Dose from Computed Tomography Scans for Korean Pediatric and Adult Patients

  • Won, Tristan;Lee, Ae-Kyoung;Choi, Hyung-do;Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • Background: In recent events of the coronavirus disease 2019 (COVID-19) pandemic, computed tomography (CT) scans are being globally used as a complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. It will be important to be aware of major organ dose levels, which are more relevant quantity to derive potential long-term adverse effect, for Korean pediatric and adult patients undergoing CT for COVID-19. Materials and Methods: We calculated organ dose conversion coefficients for Korean pediatric and adult CT patients directly from Korean pediatric and adult computational phantoms combined with Monte Carlo radiation transport techniques. We then estimated major organ doses delivered to the Korean child and adult patients undergoing CT for COVID-19 combining the dose conversion coefficients and the international survey data. We also compared our Korean dose conversion coefficients with those from Caucasian reference pediatric and adult phantoms. Results and Discussion: Based on the dose conversion coefficients we established in this study and the international survey data of COVID-19-related CT scans, we found that Korean 7-year-old child and adult males may receive about 4-32 mGy and 3-21 mGy of lung dose, respectively. We learned that the lung dose conversion coefficient for the Korean child phantom was up to 1.5-fold greater than that for the Korean adult phantom. We also found no substantial difference in dose conversion coefficients between Korean and Caucasian phantoms. Conclusion: We estimated radiation dose delivered to the Korean child and adult phantoms undergoing COVID-19-related CT examinations. The dose conversion coefficients derived for different CT scan types can be also used universally for other dosimetry studies concerning Korean CT scans. We also confirmed that the Caucasian-based CT organ dose calculation tools may be used for the Korean population with reasonable accuracy.

Photon dose response functions for accurate skeletal dosimetry for Korean and Asian populations

  • Bangho Shin;Chansoo Choi;Rui Qiu;Suhyeon Kim;Hyeonil Kim;Sungho Moon;Gahee Son;Jaehyo Kim;Haegin Han;Yeon Soo Yeom;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2195-2207
    • /
    • 2024
  • To enhance skeletal dosimetry in conjunction with the adult mesh-type reference Korean phantoms (MRKPs), Korean/Asian photon fluence-to-skeletal dose response functions (DRFs) were established utilizing an updated version of micro-CT-based detailed bone models from Tsinghua University. These bone models were incorporated into the MRKPs using the parallel geometry feature of Geant4. We calculated bone-site-specific electron absorbed fractions and used them to generate DRFs, following a similar methodology employed for ICRP-116 DRFs that have been used with the ICRP reference phantoms for skeletal dosimetry. To assess dosimetric implications of the Korean/Asian DRFs, we calculated RBM and BE doses for the MRKPs exposed to photon beams in the antero-posterior direction using the Korean/Asian and ICRP-116 DRFs. For energies ≥200 keV, the Korean/Asian DRFs-based skeletal doses exhibited excellent agreement with the ICRP-116 DRFs-based skeletal doses, attributed to the existence of charged particle equilibrium across the bone site. Conversely, significant differences of up to ~2.3 times were observed at lower energies, due to differences in the skeletal tissue distributions of bone models used to derive the Korean/Asian and ICRP-116 DRFs. The DRFs established in this study are expected to yield more accurate skeletal doses for Korean and Asian populations compared to the ICRP-116 DRFs.

Development of Detailed Korean Adult Eye Model for Lens Dose Calculation

  • Han, Haegin;Zhang, Xujia;Yeom, Yeon Soo;Choi, Chansoo;Nguyen, Thang Tat;Shin, Bangho;Ha, Sangseok;Moon, Sungho;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Background: Recently, the International Commission on Radiological Protection (ICRP) lowered the dose limit for the eye lens from 150 mSv to 20 mSv, highlighting the importance of accurate lens dose estimation. The ICRP reference computational phantoms used for lens dose calculation are mostly based on the data of Caucasian population, and thus might be inappropriate for Korean population. Materials and Methods: In the present study, a detailed Korean eye model was constructed by determining nine ocular dimensions using the data of Korean subjects. The developed eye model was then incorporated into the adult male and female mesh-type reference Korean phantoms (MRKPs), which were then used to calculate lens doses for photons and electrons in idealized irradiation geometries. The calculated lens doses were finally compared with those calculated with the ICRP mesh-type reference computational phantoms (MRCPs) to observe the effect of ethnic difference on lens dose. Results and Discussion: The lens doses calculated with the MRKPs and the MRCPs were not much different for photons for the entire energy range considered in the present study. For electrons, the differences were generally small, but exceptionally large differences were found at a specific energy range (0.5-1 MeV), the maximum differences being about 10 times at 0.6 MeV in the anteroposterior geometry; the differences are mainly due to the difference in the depth of the lens between the MRCPs and the MRKPs. Conclusion: The MRCPs are generally considered acceptable for lens dose calculations for Korean population, except for the electrons at the energy range of 0.5-1 MeV for which it is suggested to use the MRKPs incorporating the Korean eye model developed in the present study.

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.