DOI QR코드

DOI QR Code

Photon dose response functions for accurate skeletal dosimetry for Korean and Asian populations

  • Bangho Shin (Department of Nuclear Engineering, Hanyang University) ;
  • Chansoo Choi (J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida) ;
  • Rui Qiu (Department of Engineering Physics, Tsinghua University) ;
  • Suhyeon Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Hyeonil Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Sungho Moon (Department of Nuclear Engineering, Hanyang University) ;
  • Gahee Son (Department of Nuclear Engineering, Hanyang University) ;
  • Jaehyo Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Haegin Han (Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institute of Health) ;
  • Yeon Soo Yeom (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chan Hyeong Kim (Department of Nuclear Engineering, Hanyang University)
  • Received : 2023.11.17
  • Accepted : 2024.01.18
  • Published : 2024.06.25

Abstract

To enhance skeletal dosimetry in conjunction with the adult mesh-type reference Korean phantoms (MRKPs), Korean/Asian photon fluence-to-skeletal dose response functions (DRFs) were established utilizing an updated version of micro-CT-based detailed bone models from Tsinghua University. These bone models were incorporated into the MRKPs using the parallel geometry feature of Geant4. We calculated bone-site-specific electron absorbed fractions and used them to generate DRFs, following a similar methodology employed for ICRP-116 DRFs that have been used with the ICRP reference phantoms for skeletal dosimetry. To assess dosimetric implications of the Korean/Asian DRFs, we calculated RBM and BE doses for the MRKPs exposed to photon beams in the antero-posterior direction using the Korean/Asian and ICRP-116 DRFs. For energies ≥200 keV, the Korean/Asian DRFs-based skeletal doses exhibited excellent agreement with the ICRP-116 DRFs-based skeletal doses, attributed to the existence of charged particle equilibrium across the bone site. Conversely, significant differences of up to ~2.3 times were observed at lower energies, due to differences in the skeletal tissue distributions of bone models used to derive the Korean/Asian and ICRP-116 DRFs. The DRFs established in this study are expected to yield more accurate skeletal doses for Korean and Asian populations compared to the ICRP-116 DRFs.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research and Development (NSR&D) Program through the Korea Foundation of Nuclear Safety (KoFONS) funded by the Nuclear Safety and Security Commission (NSSC), by the National Research Foundation of Korea (NRF) grant funded by the Korean government, by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE), and by the Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (Project Nos.: 2203028, 2022R1C1C100809312, RS-2023-00236726, and 2022RIS-005).

References

  1. C. Choi, T.T. Ngyuen, Y.S. Yeom, H. Lee, H. Han, B. Shin, X. Zhang, C.H. Kim, B. S. Chung, Mesh-type reference Korean phantoms (MRKPs) for adult male and female for use in radiation protection dosimetry, Phys. Med. Biol. 64 (2019) 085020. 
  2. C.H. Kim, S.H. Choi, J.H. Jeong, C. Lee, M.S. Chung, HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver, Phys. Med. Biol. 53 (2008) 4093-4106.  https://doi.org/10.1088/0031-9155/53/15/006
  3. Y.S. Yeom, J.H. Jeong, C.H. Kim, M.C. Han, B.K. Ham, K.W. Cho, S.B. Hwang, HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver, Phys. Med. Biol. 59 (2014) 3969-3984.  https://doi.org/10.1088/0031-9155/59/14/3969
  4. H. Han, X. Zhang, Y.S. Yeom, C. Choi, T.T. Nguyen, B. Shin, S. Ha, S. Moon, C. H. Kim, Development of detailed Korean adult eye model for lens dose calculation, J. Radiat. Prot. Res. 45 (1) (2020) 45-52.  https://doi.org/10.14407/jrpr.2020.45.1.45
  5. W.E. Bolch, A.P. Shah, C.J. Watchman, D.W. Jokisch, P.W. Patton, D.A. Rajon, M. Zankl, N. Petoussi-Henss, K.F. Eckerman, Skeletal absorbed fractions for electrons in the adult male: considerations of a revised 50-㎛ definition of the bone endosteum, Radiat. Protect. Dosim. 127 (2007) 169-173.  https://doi.org/10.1093/rpd/ncm268
  6. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP publication 103, Ann. ICRP 37 (2-4) (2007). 
  7. ICRP, Adult mesh-type reference computational phantoms, ICRP Publication 145, Ann. ICRP 49 (3) (2020). 
  8. ICRP, Conversion coefficients for radiological protection quantities for external radiation exposures, ICRP Publication 116, Ann. ICRP 40 (2-5) (2010). 
  9. ICRP, The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions, ICRP Publication 133, Ann. ICRP 45 (2) (2016). 
  10. ICRP, Dose coefficients for external exposures to environmental sources, ICRP Publication 144, Ann. ICRP 49 (2) (2020). 
  11. Y.S. Yeom, Z.J. Wang, T.T. Nwguyen, H.S. Kim, C. Choi, M.C. Han, C.H. Kim, J. K. Lee, B.S. Chung, M. Zankl, N. Petoussi-Henss, W.E. Bolch, C. Lee, Development of skeletal system for mesh-type ICRP reference adult phantoms, Phys. Med. Biol. 61 (19) (2016) 7054-7073.  https://doi.org/10.1088/0031-9155/61/19/7054
  12. A.A. Bahadori, P. Johnson, D.W. Jokisch, K.F. Eckerman, W.E. Bolch, Response functions for computing absorbed dose to skeletal tissues from neutron irradiation, Phys. Med. Biol. 56 (2011) 6873-6897.  https://doi.org/10.1088/0031-9155/56/21/008
  13. P.B. Johnson, A.A. Bahadori, K.F. Eckerman, C. Lee, W.E. Bolch, Response functions for computing absorbed dose to skeletal tissues from photon irradiation-an update, Phys. Med. Biol. 56 (2011) 2347-2365.  https://doi.org/10.1088/0031-9155/56/8/002
  14. B. Shin, Y. Lee, J.W. Choi, S.M. Lee, H.J. Choi, Y.S. Yeom, New skeletal dose coefficients of the ICRP-110 reference phantoms for idealized external fields to photons and neutrons using dose response functions (DRFs), Nucl. Eng. Technol. 55 (2023) 1949-1958. 
  15. M. Hough, P. Johnson, D. Rajon, D. Jokisch, C. Lee, W. Bolch, An Image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources, Phys. Med. Biol. 56 (2011) 2309-2346.  https://doi.org/10.1088/0031-9155/56/8/001
  16. S. Gao, L. Ren, R. Qiu, Z. Wu, C. Li, J. Li, Electron absorbed fractions in an image-based microscopic skeletal dosimetry model of Chinese adult male, Radiat. Protect. Dosim. 175 (2017) 450-459. 
  17. C. Choi, Y.S. Yeom, T.T. Nguyen, H. Lee, H. Han, B. Shin, X. Zhang, C.H. Kim, B. S. Chung, Korean anatomical reference data for adults for use in radiological protection, J. Kor. Phys. Soc. 72 (2018) 183-191.  https://doi.org/10.3938/jkps.72.183
  18. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V. N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J. M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4, nucl. Instrum, Nucl. Instrum. Methods Phys. Res. 835 (2016) 186-225.  https://doi.org/10.1016/j.nima.2016.06.125
  19. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. Mckinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 Release Overview-MCNP6 Version 1.0, Technical Report LA-UR-13-22934, Los Alamos National Laboratory, 2013. 
  20. T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta, L. Sihver, Particle and heavy ion transport code system, PHITS, version 2.52, J. Nucl. Sci. Technol. 50 (9) (2013) 913-923.  https://doi.org/10.1080/00223131.2013.814553
  21. M. Orok, Implementation of a Tetrahedral Mesh Phantom Geometry Library for EGSnrc, Doctoral Dissertation, Universite d'Ottawa/University of Ottawa, 2022. 
  22. B. Shin, Y.S. Yeom, C. Choi, W.E. Bolch, H. Han, T.T. Nguyen, S. Moon, G. Son, S. Kim, H. Kim, C.H. Kim, Incorporation of micro-CT-based detailed bone models into ICRP adult mesh-type reference computational phantoms, Phys. Med. Biol. 67 (18) (2022) 185008. 
  23. J. Apostolakis, M. Asai, G. Cosmo, A. Howard, V. Ivanchenko, M. Verderi, Parallel geometries in Geant4: foundation and recent enhancements, in: Proc. Of the IEEE NSS/MIC/RTSD Conf. 19-25 October (Dresden, Germany, 19-25 October 2008), IEEE), Picastaway, NJ, 2008, pp. 883-886. 
  24. Y.S. Yeom, J.H. Jeong, M.C. Han, C.H. Kim, Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations, Phys. Med. Biol. 59 (12) (2014) 3173-3185.  https://doi.org/10.1088/0031-9155/59/12/3173
  25. J. Schumann, H. Paganetti, J. Shin, B. Faddegon, J. Perl, Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4, Phys. Med. Biol. 57 (2012) 3281-3293.  https://doi.org/10.1088/0031-9155/57/11/3281
  26. Y.S. Yeom, M.C. Han, C. Choi, H. Han, B. Shin, T. Furuta, C.H. Kim, Computational speeds and memory requirements of mesh-type ICRP reference computational phantoms in Geant4, MCNP6, and PHITS, Health, Phys 116 (2019) 664-676.  https://doi.org/10.1097/HP.0000000000000999
  27. K.F. Eckerman, Aspects of the Dosimetry of Radionuclides within the Skeleton with Particular Emphasis on the Active Marrow Proc. 4th Int. Radiopharmaceutical Dosimetry Symp. Ed A T Schlafke-Stelson and E E Watson, Oak Ridge Associated Universities), Oak Ridge, TN, 1985, pp. 514-534. 
  28. The MathWorks Inc, MATLAB Version: 9.14.0 (R2023a, The MathWorks Inc, Natick, Massachusetts, 2023. https://www.mathworks.com. 
  29. O. Klein, Y. Nishina, uber die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z. Phys. 52 (1929) 853-869.  https://doi.org/10.1007/BF01366453
  30. J. Hubbell, S. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (Version 1.4), 2004. http://physics.nist.gov/xaamdi. 
  31. S.D. King, F.W. Spiers, Photoelectron enhancement of the absorbed dose from X rays to human bone marrow: experimental and theoretical studies, Br. J. Radiol. 58 (1985) 345-356.  https://doi.org/10.1259/0007-1285-58-688-345
  32. R. Kramer, J.W. Vieira, H.J. Khoury, F.R. Lima, D. Fuelle, All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry, Phys. Med. Biol. 38 (2003) 1239-1262. 
  33. J. Cho, E. Kim, T.E. Kwon, Y. Chung, Derivation of external exposure characteristics of industrial radiography based on empirical evidence, Journal of Radiation Protection and Research 47 (2) (2022) 93-98.  https://doi.org/10.14407/jrpr.2021.00423
  34. C.J. Watchman, D. Hasenauer, W.E. Bolch, Derivation of site-specific skeletal masses within the current ICRP age series, Phys. Med. Biol. 52 (2007) 3133-3150. https://doi.org/10.1088/0031-9155/52/11/014