• Title/Summary/Keyword: Reference gas

Search Result 474, Processing Time 0.024 seconds

A Study on the Quality of Sesame Oil Using in Restaurant (음식점(飮食店)에서 사용중(使用中)인 참기름의 질적(質的) 평가(評價)에 관(關)한 연구(硏究))

  • Park, U-Shin;Kim, Song-Jeon;Lee, Yong-Ock
    • Journal of the Korean Applied Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.63-69
    • /
    • 1987
  • This study is carried out to compare the quality of sesamin oil using to 52 restaurants in city with that of pure sesamin oil. The pure sesamin, corn soybean and perilla oils used reference oil commodities of famous corporations. The fatty acid, sesamin and sterols of reference and restaurant oils are analyzed by gas chromatography. The results are as follows; 1. A pure sesamin oil can be identified with the component and content of fatty acid, sterol and sesamin. 2. In 52 restaurant oils, 12 oils (23%) are estimated as pure sesamin oil and the remainders (77%) are mixed with corn oil, soybean oil an perilla oil. 3. The sesamin oil that is mixed with corn oil is 35%, soybean oil is 17% and perilla oil is 15%.

Measurements of the Benzene Absorption Cross Section in the Range of Ultra Violet (UV) (UV 영역에서 벤젠의 흡수 단면적의 측정)

  • Lee, J.S.;Ryu, S.Y.;Kim, H.H.;Woo, J.C.;Kim, K.B.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.922-928
    • /
    • 2006
  • An absolute absorption cross section of benzene was measured with a spectrometer system including a mono-chrometer and a grating in the wavelength region of $240{\sim}280nm$ under the atmospheric pressure and room temperature in the laboratory. A certificated reference benzene gas ($98{\mu}mol/mol$ in $N_2$) was used to measure its absorption cross section. A 710 mm cell with a quartz window and a 150 W Xe arc lamp were employed. The magnitude of absorption cross section of $1.41{\times}10^{-18}cm^2$ was lower than that of the reference spectra ($2.5{\times}10^{-18}cm^2$) of high resolution spectrometer, Total measurement uncertainty was estimated to be 4.0%.

Numerical Analysis Techniques and Flow Characteristics of Two-Stage Centrifugal Compressor for R134a Turbo-Chiller (R134a 터보 냉동기용 2단 원심 압축기의 수치해석 기법과 내부유동 특성)

  • Park, Han-Young;Oh, Hyun-Taek;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 2007
  • In this study, flow structure in a two-stage centrifugal compressor for a turbo-chiller with the refrigerant, R134a, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller, diffuser and return channel were analyzed in detail including velocity vector, secondary flow, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade and the meridional shape of the return channel were performed through the flow analysis, while some numerical schemes and techniques including Multiple Frames of Reference technique, real gas property data and inlet boundary condition changes, which were used in CFD, were compared with their features. The results will be used as reference data for a new design of 3-D impeller shape to improve R134a compressor performance.

Bioequivalence Assesment of Tiropramide in Korean Male Volunteers

  • Park, Young-Jin;Chung, Youn-Bok;Kwon, Oh-Seung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.205-205
    • /
    • 2002
  • Two formulations of tiropramide {(${\pm}$)${\alpha}$-(benzoylamino)-4-[2-(diethylamino)-ethoxy]-N,N-dipropyl-benzenepropanamide hydrochloride}, an antispasmodic agent, were orally administered to 16 healthy Korean male volunteers by Latin crossover design with the purpose of evaluating bioeqivalence and phamacokinetics of tiropramide. Tiropramide in human plasma was determined by a gas chromatography/nitrogen phosphorus detector. Detection limit of tiropramide was 5 ng/ml. C$\_$max/ values in test and reference formulations were 93.9 ${\pm}$ 54.3 and 96.4 ${\pm}$ 51.6 ng/ml, respectively. AUC$\_$0\longrightarrowlast/ and AUC$\_$0\longrightarrowinf/ were, respectively, 330.7 ${\pm}$ 193.9 and 349.5 ${\pm}$ 205.3 ng.hr/ml for test formulation, 348.9 ${\pm}$ 207.7 and 380.8 ${\pm}$ 239.0 ng.hr/ml for reference formulation. Terminal half-life was 2.3-2.6 hr. Bioavailability differences for C/aub max/ and AUC$\_$0\longrightarrowlast/ were 2.48% and 5.22%, respectively. Minimum detection differences were less than 20% in both C$\_$max/ AUC. Based on this results, two formulations of tiropramide were considered to be bioequivalent

  • PDF

Research about Thermal Stratification Effect on HCCI Combustion Fueled with Primary Reference Fuel (예혼합기의 열적성층화가 PRF연료의 예혼합압축자기착화에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.157-163
    • /
    • 2008
  • The HCCI combustion mode poses its own set of narrow engine operating by knocking. In order to solve this, inhomogeneity method of mixture and temperature is suggested. The purpose of this research is to get fundamental knowledge about the effect of thermal stratification on HCCI combustion of PRF -Air mixture. The temperature stratification is made by buoyancy effect in combustion chamber of RCM. The analysis items are pressure, temperature of in-cylinder gas and combustion duration. In addition, the structure of flames using the two dimensional chemiluminescence's images by a framing camera are analyzed. Under stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous. Further, the LTR period of homogeneous conditions became shorter than that of the stratified conditions. With the case of homogeneous condition, the luminosity duration becomes shorter than the case of stratified condition. Additionally, under stratified condition, the brightest luminosity intensity is delayed longer than at homogeneous condition.

Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis (Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구)

  • Lee, Hyungyu;Lee, Jungsoo;Kim, Donghwa;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.

Marginal Abatement Cost Analysis for the Korean Residential Sector Using Bottom-Up Modeling (상향식 모형을 이용한 국내 주거부문의 온실가스 한계감축비용 분석)

  • Chung, Yongjoo;Kim, Hugon;Paik, Chunhyun;Kim, Young Jin
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.58-68
    • /
    • 2015
  • A marginal abatement cost analysis has been conducted to analyze the effects of abatement measures on greenhouse gas (GHG) emissions for the Korean residential sector. A bottom-up model using MESSAGE has been developed by defining the energy demand and constructing the reference energy system for the residential sector. A great amount of activity data has also been analyzed. Abatement potentials and related costs of individual abatement measures are investigated. The result from the marginal abatement cost analysis may provide general guidelines and procedures for the establishment of GHG abatement polices.

Economic Evaluation of Coals Imported in Last 3 Years for Power Plant Based on Thermal Performance Analysis (최근 3년간 수입 유연탄 분석 및 연소열성능 해석을 활용한 석탄화력 발전소 탄종 경제성 평가 연구)

  • Baek, Sehyun;Park, Hoyoung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.44-53
    • /
    • 2013
  • In this study, the economic evaluation for imported coals was conducted for power plant based on thermo-dynamical performance analysis. The number of coal types considered was 1,755 imported by five power generation companies in Korea during the 2010-2012. The higher heating value (HHV) of the coals ranged 4,000-6,500 kcal/kg, mostly sub-bituminous. The 1D thermo-dynamical performance modeling was performed for a 500 MWe standard power plant using PROATES code. It was founded that the low rank coals had negative effects on the plant efficiency mainly due to the increased heat loss by moisture, hydrogen and flue gas. Based on the performance analysis, the economic performance of the coals was evaluated. The apparent price of low-rank coals tended to be significantly lower than design coal; for example, the unit price of coal with a HHV of 4,000 kcal/kg was 57% of the reference coal having 6,080 kcal/kg. Considering the negative effects leading to a decrease in the thermal performance, heating value compensation, and increased parasite load, the corrected unit cost for the coal with 4,000 kcal/kg was 90.7% of the reference coal. Overall, the cost saving by imported coals was not high as expected.

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi;Kwang-Il Ahn;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4534-4550
    • /
    • 2022
  • Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.