• Title/Summary/Keyword: Reference fuel

Search Result 326, Processing Time 0.03 seconds

Proposal and Validation of a New Flame Stability Diagram to Gas Estimate Interchangeability (가스호환성 판정에 편리한 새로운 화염안정영역의 도시법의 제안 및 유용성 검토)

  • Lee, Chang-Eon;Kim, Jong-Min;Hwang, Cheol-Hong;Kim, Jong-Hyun
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • A flame stability diagram in a partially premixed flame is typically expressed using the axis coordinates of heat input rate and equivalence ratio. These diagrams are inadequate for identifying changes in combustion conditions and flame stability when a reference fuel is substituted with other fuels under identical operating conditions. This study proposes a new type of diagram and validates it experimentally. In this new diagram, the axis coordinates are air flow rate and Wobbe fuel flow rate, defined as the fuel flow rate multiplied by the square root of the relative density. The diagram was validated in trials using various fuels, including $CH_4$, $C_{3}H_{8}$, and LFG-$C_{3}H_{8}$ mixed fuels, in a domestic gas-range and an gas interchangeability test burner. The results of these trials show that the new diagram can provide information useful for assessing gas interchangeability of combustion conditions and flame stability when one fuel is substituted with another under identical operating conditions.

  • PDF

IN-PILE PERFORMANCE OF HANA CLADDING TESTED IN HALDEN REACTOR

  • Kim, Hyun-Gil;Park, Jeong-Yong;Jeong, Yong-Hwan;Koo, Yang-Hyun;Yoo, Jong-Sung;Mok, Yong-Kyoon;Kim, Yoon-Ho;Suh, Jung-Min
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.423-430
    • /
    • 2014
  • An in-pile performance test of HANA claddings was conducted at up to 67 GWD/MTU in the Halden research reactor in Norway over a 6.5 year period. Four types of HANA claddings (HANA-3, HANA-4, HANA-5, and HANA-6) and a reference Zircaloy-4 cladding were used for the in-pile test. The evaluation parameters of the HANA claddings were the corrosion behavior, dimensional changes, hydrogen uptake, and tensile strength after the claddings were tested under the simulated operation conditions of a Korean commercial reactor. The oxide thickness ranged from 15 to 37 mm at a high flux region in the test rods, and all HANA claddings showed corrosion resistance superior to the Zircaloy-4 cladding. The creep-down rate of all HANA claddings was lower than that of the Zircaloy-4 cladding. In addition, the hydrogen content of the HANA claddings ranged from 54 to 96 wppm at the high heat flux region of the test rods, whereas the hydrogen content of the Zircaloy-4 cladding was 119 wppm. The tensile strength of the HANA and Zircaloy-4 claddings was similarly increased when compared to the un-irradiated claddings owing to the radiation-induced hardening.

The Basic Study on the Leak Test Method of the Hydrogen Exhaust Pipe for a Fuel Cell Vehicle (연료전지차용 수소배출 배관 및 배관이음매 안전성 평가를 위한 기초 연구)

  • Suh, Ho-Cheol;Park, Kyoung-Suk;Seo, Kyung-Doo;Yong, Gee-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • This study deals with a basic proposal to prove the safety for the exhausted fittings of the hydrogen fuel cell vehicle. First, this study was approached to numerical analysis solving to close the exact boundary condition (Axial, Bending, Lateral) and the second, this study produced the Lateral movement equipment for the vibration. For the numerical analysis, This study was considered with the exact solution of Lateral movement and the resonance effect for durability sample according to fitting positions. The second, This study was made for special equipment for displacement/gas leak and the frequency because the domestic samples were comparing with foreign fitting and foreign fitting for the hydrogen fuel cell vehicle. The result of this study was satisfied with domestic fittings for the basic reference but it need more test because of other situation for hydrogen fuel cell vehicle.

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Mala, Petra;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2431-2441
    • /
    • 2020
  • Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Measurement of Laminar Burning Velocity of Endothermic Fuel Surrogates (흡열분해 모사연료의 층류화염 전파속도 측정)

  • Jin, Yu-In;Lee, Hyung Ju;Han, Jeongsik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.67-75
    • /
    • 2019
  • The laminar burning velocity of endothermic fuel surrogates is measured in this study, in order to investigate combustion characteristics of aviation fuel after being used as coolant in an active cooling system of a hypersonic flight vehicle. A Bunsen burner was manufactured such that the laminar burning velocity can be taken for two types of surrogate fuels, SF-1 and 2. The results showed that the burning velocity of surrogate fuels was faster at high equivalence ratio conditions than that of the reference fuel (RF), and specifically, the velocity of SF-1 had the maximum value at the highest equivalence ratio compared with those of SF-2 and RF.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

Economic Analysis Study on the R&D Effect of Performance Improvement of the Tri-generation Fuel Cell System (연료전지 삼중열병합 시스템의 성능개선 R&D 효과에 대한 경제성 분석 연구)

  • Ahn, Jong-Deuk;Lee, Kwan-Young;Seo, Seok-Ho
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.26-39
    • /
    • 2022
  • Considering the recent substantial increase in national research and development (R&D) budgets in the energy sector there has been increased Interest in the effectiveness of government R&D investments. We conducted a case study to calculate the allowable scale and effectiveness of R&D investment by calculating the direct performance improvement effect resulting from R&D investment as an economic value. Using conditions that existed prior to R&D investments as a reference, five cases in which performance improved due to R&D investments were compared and analyzed. The government's financial investment is increasing rapidly in line with the establishment of the national hydrogen roadmap. R&D is needed to enhance the current low technology readiness level of hydrogen fuel cells compared to solar and wind energy fields. Therefore, an R&D project to improve the performance of the fuel cell system was selected as this case study's subject. Using the results in this study, the allowable level of investment in the task unit of national R&D projects could be calculated. Moreover, it is advisable to provide a standard for rational decision making for new R&D investments since it is possible to determine investment priorities among a large number of candidates.

Projection and Burnup Trends of Spent Nuclear Fuel in Korea (국내 사용후핵연료 현황 분석)

  • 조동건;최종원;이희환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.261-267
    • /
    • 2004
  • Inventories, projections, and characteristics of spent nuclear fuel(SNF) generated from domestic nuclear power plants were updated to support high-level waste disposal system design. The historical and projected inventory by the end 2055 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively The ratio of quantity for TEX>$17{\times}17$ SNF was shown to be 0.6 as of 2003. The amount of TEX>$17{\times}17$ SNF, however, will be less than that of TEX>$16{\times}16$ KSFA after 2012, while the quantity of TEX>$16{\times}16$ KSFA will reach to 70% of the total spent fuels in the 2055. Average turnup of SNF revealed ~36GWD/MTU and ~40GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will exceed 45GWD/MTU at the end of 2000's. Therefore, it seems reasonable to use the TEX>$17{\times}17$ 4.5w/o, 45GWD/MTU as the Reference SNF at present state. The TEX>$16{\times}16$ KSFA 4.5w/o, 55GWD/MTU, however, should be Reference SNF after ~2010.

  • PDF

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.