• 제목/요약/키워드: Reference cube

검색결과 21건 처리시간 0.019초

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • 제36권3호
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석 (Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite)

  • 김경훈;김승균;석진영;김종래
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.609-618
    • /
    • 2015
  • CNUSAIL-1은 태양돛을 탑재한 3U 크기의 큐브위성이다. 저궤도에서 태양돛을 전개하고, 이에 따른 자세와 궤도에 대한 영향을 확인하는 임무를 수행한다. 본 논문에서는 CNUSAIL-1을 위한 자세결정 알고리즘의 구현 가능성을 제시하였다. 위성의 기준센서는 태양센서, 3축 지자기센서를 이용하며, 관성센서는 MEMS 자이로센서를 사용한다. 큐브위성용 센서는 상대적으로 저가이며, 성능 및 잡음특성이 좋지 않은 단점이 있다. 따라서 자세결정 알고리즘으로 노이즈 특성을 고려할 수 있는 확장칼만필터를 적용하였다. 또한 자세결정의 결정론적 방법인 QUEST 알고리즘과 비교하여 그 타당성을 검증하였다.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인 (Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory)

  • 김현구;정진화;안해준;지영미
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

A Solar Cell Based Coarse Sun Sensor for a Small LEO Satellite Attitude Determination

  • Zahran, Mohamed;Aly, Mohamed
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.631-642
    • /
    • 2009
  • The sun is a useful reference direction because of its brightness relative to other astronomical objects and its relatively small apparent radius as viewed by spacecrafts near the Earth. Most satellites use solar power as a source of energy, and so need to make sure that solar panels are oriented correctly with respect to the sun. Also, some satellites have sensitive instruments that must not be exposed to direct sunlight. For all these reasons, sun sensors are important components in spacecraft attitude determination and control systems. To minimize components and structural mass, some components have multiple purposes. The solar cells will provide power and also be used as coarse sun sensors. A coarse Sun sensor is a low-cost attitude determination sensor suitable for a wide range of space missions. The sensor measures the sun angle in two orthogonal axes. The Sun sensor measures the sun angle in both azimuth and elevation. This paper presents the development of a model to determine the attitude of a small cube-shaped satellite in space relative to the sun's direction. This sensor helps small cube-shaped Pico satellites to perform accurate attitude determination without requiring additional hardware.

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

다목적실용위성 자료의 오픈 데이터 큐브 적용을 위한 기본 고려사항 (Consideration Points for application of KOMPSAT Data to Open Data Cube)

  • 이기원;김광섭;이선구;김용승
    • 한국지리정보학회지
    • /
    • 제22권1호
    • /
    • pp.62-77
    • /
    • 2019
  • 지구관측위성 위원회(Committee on Earth Observation Satellites: CEOS)에서 주관하는 오픈 데이터 큐브(Open Data Cube: ODC)는 지구관측그룹(Group on Earth Observations: GEO)에서 구축하는 전 지구 관측시스템(Global Earth Observation System of Systems: GEOSS)의 기반 플랫폼으로 적용되고 발전하고 있다. ODC는 클라우드 컴퓨팅 환경을 기반으로 무상으로 공개되는 대용량의 위성영상정보를 이용하여 국가 규모, 지역 단위에서 사용자가 원하는 다양한 수준의 과학적 정보처리와 분석을 목적으로 하는 응용 서비스 구축에 적용할 수 있는 오픈소스 플랫폼이다. 이 연구에서는 ODC의 주요 특징에 대하여 유사한 목적을 갖는 구글 어스 엔진과 비교하여 설명하였다. 그리고 ODC에 대하여 소개하고 우리나라의 다목적실용위성(KOMPSAT) 영상정보를 이 플랫폼에 적용하는 데 필요한 기본 개념과 고려 사항을 제시하고자 한다. 또한, KOMPSAT 위성영상을 이 플랫폼에서 사용하기 위한 단계를 구분하여 설명하였고 실제 데이터를 이용하여 데이터의 입력과 등록에 적용되는 중간 과정을 예시하였다. 한편 오픈 데이터 사용권 관점에서 KOMPSAT 위성영상을 ODC 응용 서비스에서 적용할 수 있는 실제 방안을 제시하였다. KOMPSAT 위성영상정보의 ODC 적용을 위한 정책과 기술 사항들은 향후 GEO의 GEOSS에 다른 유상 위성정보를 사용하는 데 중요한 근거가 될 것으로 기대한다.

Stepwise Inertial Control of a Doubly-Fed Induction Generator to Prevent a Second Frequency Dip

  • Kang, Mose;Lee, Jinsik;Hur, Kyeon;Park, Sang Ho;Choy, Youngdo;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2221-2227
    • /
    • 2015
  • To arrest a frequency nadir, a stepwise inertial control (SIC) scheme generates a constant active power reference signal of a wind turbine generator (WTG) immediately after a disturbance and maintains it for the predetermined time. From that point, however, the reference of a WTG abruptly decreases to restore the rotor speed for the predefined period. The abrupt decrease of WTG output power will inevitably cause a second frequency dip. In this paper, we propose a modified SIC scheme of a doubly-fed induction generator (DFIG) that can prevent a second frequency dip. A reference value of the modified SIC scheme consists of a reference for the maximum power point tracking control and a constant value. The former is set to be proportional to the cube of the rotor speed; the latter is determined so that the rotor speed does not reach the minimum operating limit by considering the mechanical power curve of a DFIG. The performance of the modified SIC was investigated for a 100 MW aggregated DFIG-based wind power plant under various wind conditions using an EMTP-RV simulator. The results show that the proposed SIC scheme significantly increases the frequency nadir without causing a second frequency dip.

가상적 참값으로써 소다 측정자료를 적용한 라이다에 의한 풍속연직분포 측정의 불확도 분석 (Uncertainty Analysis on Wind Speed Profile Measurements of LIDAR by Applying SODAR Measurements as a Virtual True Value)

  • 김현구;최지휘
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.79-85
    • /
    • 2010
  • The uncertainty in WindCube LIDAR measurements, which are specific to wind profiling at less than 200m above ground levelin wind resource assessments, was analyzed focusing on the error caused by its volume sampling principle. A two-month SODAR measurement campaign conducted in an urban environment was adopted as the reference wind profile assuming that various atmospheric boundary layer shapes had been captured. The measurement error of LIDAR at a height z was defined as the difference in the wind speeds between the SODAR reference data, which was assumed to be a virtually true value, and the numerically averaged wind speed for a sampling volume height interval of $z{\pm}12.5m$. The pattern of uncertainty in the measurement was found to have a maximum in the lower part of the atmospheric boundary layer and decreased with increasing height. It was also found that the relative standard deviations of the wind speed error ratios were 6.98, 2.70 and 1.12% at the heights of 50, 100 and 150m above ground level, respectively.

Pre-swirl system의 유량계수 향상을 위한 Pre-swirl nozzle의 형상 최적화 전산해석 연구 (Pre-swirl Nozzle Geometry Optimization to Increase Discharge Coefficient Using CFD Analysis)

  • 이현규;이정수;김동화;조진수
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.21-28
    • /
    • 2017
  • Optimization process of pre-swirl nozzle geometry was conducted to improve the discharge coefficient of pre-swirl system by using CFD. The optimization of pre-swirl nozzle shape covered the converging angle and the location of the converging nozzle. Optimization process included Optimal Latin Hyper-cube Design method to get the experimental points and the Kriging method to create the response surface which gives candidate points. The process was finished when the difference between the predicted value and CFD value of candidate point was less than 0.1 %. This paper compared the Reference model, Initial model which is the first model of optimization and Optimized model to study flow characteristics. Finally, the discharge coefficient of Optimized model is improved about 17 % to the Reference model.