• Title/Summary/Keyword: Reference Evapotranspiration

Search Result 83, Processing Time 0.032 seconds

Comparison of Evapotranspiration Estimation Approaches Considering Grass Reference Crop (증발산 산정 방법들의 비교 - 잔디기준작물을 중심으로)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.212-228
    • /
    • 2008
  • Five representative reference evapotranspiration(RET) equations were selected, and these equations were compared with pan evaporation by correlation analysis. Pan coefficients were also estimated. Furthermore, five selected RET equations were compared to find the similarity among those at the 21 meteorological stations located in South Korea. Five RET equations selected from 4 different category were Penman(combination approach), FAO Penman-Monteith(FAO P-M) (single source approach), Makkink and Priestley-Taylor (radiation approach) and Hargreaves(temperature approach) equations. In this study, the geographical and topographical conditions were considered for the selection of study stations. The daily meteorological data measured from 1970 at an interval of 5 years were applied in this study. The evapotranspiration estimates obtained by applying evapotranspiration equations were evaluated with numerical and graphical methods. The correlation coefficients between pan evaporation and RET in study stations were above 0.9 indicating very high correlation; however, the slopes of the individual regression lines show the values greater or less than 1.0. Hargreaves equation(temperature approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 12 study stations, which are located near to seashore except Daegu station. On the other hand, Priestley-Taylor equation(radiation approach) shows the most similar evapotranspiration estimates to those of FAO P-M equation from 8 study stations, which are located in inland.

Calibration and Validation of the Hargreaves Equation for the Reference Evapotranspiration Estimation in Gyeonggi Bay Watershed (경기만 유역의 기준 증발산량 산정을 위한 Hargreaves 공식의 보정 및 검정)

  • Lee, Khil-Ha;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.413-422
    • /
    • 2008
  • It is essential to locally adjust the Hargreaves parameter for estimating reference evapotranspiration with short data as a substitute of Penman-Monteith equation. In this study, evaluation of daily-based reference evapotranspiration is computed with Hargreaves equation. in Gyeonggi bay area including Ganghwa, Incheon, Suwon, Seosan, and Cheonan station for the time period of 1997-2004. Hargreaves coefficient is adjusted to give the best fit with Penman-Monteith evapotranspiration, being regarded as a reference. Then, the preferred parameters are validated for the same stations for the time period of 2005-2006. The optimization-based correction in calibration for 1997-2004 shows improved performance of the Hargreaves equation, giving 0.68-0.77 to 0.92-0.98 in Nash-Sutcliffe coefficient of efficiency (NSC) and 14.63-23.30 to 5.23-11.75 in RMSE. The validation for 2005-2006 shows improved performance of the Hargreaves equation, giving 0.43-0.85 to 0.93-0.97 in NSC and 14.43-26.81 to 6.48-9.09 in RMSE.

Trends of Annual and Monthly FAO Penman-Monteith Reference Evapotranspiration (연별 및 월별 FAO Penman-Monteith 기준증발산 추세 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.65-77
    • /
    • 2008
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on annual and monthly FAO Penman-Monteith (FAO P-M) reference evapotranspiration, and energy and aerodynamic terms of FAO P-M reference evapotranspiration were studied. In this study, 21 climatological stations were selected. The statistical methods applied for trend analysis are Spearman rank test, Sen's test, linear regression analysis and analysis of actual variation ratio. Furthermore, the cluster analysis was applied to cluster 21 study stations by considering the geographical and topographical characteristics of study area. The study results indicate that urbanization affects the trend and amount of FAO P-M reference evapotranspiration, energy term and aerodynamic term; however, the result of Sen's test indicates that urbanization does not significantly affect the magnitude of trend (Sen's slope). The energy term increased at study stations located in coastal area; however, decreased at study stations located in inland area. The topographical slope of study area did not significantly influence on the trend of energy term. The aerodynamic term increased in both coastal area and inland area, indicating much significantly increasing trend in inland area, and it was also affected by the topographical slope of the study area.

Computation of Reference Crop Evapotranspiration for Irrigation Scheduling (관개계획을 위한 기준작물 증발산량 산정 -고삼 저수지에 대한 사례연구-)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.43-48
    • /
    • 1998
  • In order to provide basic information for the estimation of evapotranspiration for grass (Joycia Japonica), both field lysimeter experiment and model prediction were performed to estimate daily ET Various methods were used to predict daily reference crop ET and crop coefficients. Measured mean daily ET during the 1997 growing season was 4.5mm Model predicted mean daily ET during the 1997 growing season varied from 3.6 to 4.7mm depending on the prediction model Crop coefficients varied from 0.96 to 1.27 depending on the prediction model Comparison of the seven reference crop ET prediction methods used in this study shows that the Penman-Monteith method gave the smallest ET while the Hargreaves method gave the largest ET. The crop coefficient by the corrected Penman method was 1.03, which is closest to 1.0, suggesting that this method may he the best prediction method.

  • PDF

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

Relationship Analysis of Reference Evapotranspiration and Heating Load for Water-Energy-Food Nexus in Greenhouse (물-에너지-식량 넥서스 분석을 위한 시설재배지의 기준작물증발산량과 난방 에너지 부하 관계 분석)

  • Kim, Kwihoon;Yoon, Pureun;Lee, Yoonhee;Lee, Sang-Hyun;Hur, Seung-Oh;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.23-32
    • /
    • 2019
  • Increasing crop production with the same amount of resources is essential for enhancing the economy in agriculture. The first prerequisite is to understand relationships between the resources. The concept of WEF (Water-Energy-Food) nexus analysis was first introduced in 2011, which helps to interpret inter-linkages among the resources and stakeholders. The objective of this study was to analyze energy-water nexus in greenhouse cultivation by estimating reference evapotranspiration and heating load. For the estimation, this study used the physical model to simulate the inside temperature of the agricultural greenhouse using heating, solar radiation, ventilated and transferred heat losses as input variables. For estimating reference evapotranspiration and heating load, Penman-Monteith equation and seasonal heating load equation with HDH (Heating Degree-Hour) was applied. For calibration and validation of simulated inside temperature, used were hourly data observed from 2011 to 2012 in multi-span greenhouse. Results of the simulation were evaluated using $R^2$, MAE and RMSE, which showed 0.75, 2.22, 3.08 for calibration and 0.71, 2.39, 3.35 for validation respectively. When minimum setting temperature was $12^{\circ}C$ from 2013 to 2017, mean values of evapotranspiration and heating load were 687 mm/year and 2,147 GJ/year. For $18^{\circ}C$, Mean values of evapotranspiration and heating load were 707 mm/year and 5,616 GJ/year. From the estimation, the relationship between water and heat energy was estimated as 1.0~2.6 GJ/ton. Though additional calibrations with different types of greenhouses are necessary, the results of this study imply that they are applicable when evaluating resource relationship in the greenhouse cultivation complex.

Evaluation of improvement effect on the spatial-temporal correction of several reference evapotranspiration methods (기준증발산량 산정방법들의 시공간적 보정에 대한 개선효과 평가)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.701-715
    • /
    • 2020
  • This study compared several reference evapotranspiration estimated using eight methods such as FAO-56 Penman-Monteith (FAO PM), Hamon, Hansen, Hargreaves-Samani, Jensen-Haise, Makkink, Priestley-Taylor, and Thornthwaite. In addition, by analyzing the monthly deviations of the results by the FAO PM and the remaining seven methods, monthly optimized correction coefficients were derived and the improvement effect was evaluated. These methods were applied to 73 automated synoptic observation system (ASOS) stations of the Korea Meteorological Administration, where the climatological data are available at least 20 years. As a result of evaluating the reference evapotranspiration by applying the default coefficients of each method, a large fluctuation happened depending on the method, and the Hansen method was relatively similar to FAO PM. However, the Hamon and Jensen-Haise methods showed more large values than other methods in summer, and the deviation from FAO PM method was also large significantly. When comparing based on the region, the comparison with FAO PM method provided that the reference evapotranspiration estimated by other methods was overestimated in most regions except for eastern coastal areas. Based on the deviation from the FAO PM method, the monthly correction coefficients were derived for each station. The monthly deviation average that ranged from -46 mm to +88 mm before correction was improved to -11 mm to +1 mm after correction, and the annual average deviation was also significantly reduced by correction from -393 mm to +354 mm (before correction) to -33 mm to +9 mm (after correction). In particular, Hamon, Hargreaves-Samani, and Thornthwaite methods using only temperature data also produced results that were not significantly different from FAO PM after correction. It can be also useful for forecasting long-term reference evapotranspiration using temperature data in climate change scenarios or predicting evapotranspiration using monthly or seasonal temperature forecasted values.

Sensitivity analysis of the FAO Penman-Monteith reference evapotranspiration model (FAO Penman-Monteith 기준증발산식 민감도 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.285-299
    • /
    • 2023
  • Estimating the evapotranspiration is very important factor for effective water resources management, and FAO Penman-Monteith (FAO P-M) model has been applied for reference evapotranspiration estimation by many researchers. However, because various input data are required for the application of FAO P-M model, understanding the effect of each input data on FAO P-M model is necessary. Therefore, in this study, for 56 study stations located in South Korea, the effects of 8 meteorological factors (maximum and minimum temperature, wind speed, relative humidity, solar radiation, vapor pressure deficit, net radiation, ground heat flux), energy and aerodynamic terms of FAO P-M model, and elevation on FAO P-M reference evapotranspiration (RET) estimation were analyzed. The relative sensitivity analysis was performed to determine how 10% increment of each specific independent variable affects a reference evapotranspiration under given set of condition that other independent variables are unchanged. Furthermore, to select the 5 representative stations and perform the monthly relative sensitivity analysis for those stations, 56 study stations were classified into 5 clusters using cluster analysis. The study results showed that net radiation was turned out to be the most sensitive factor in 8 meteorological factors for 56 study stations. The next most sensitive factor was relative humidity, solar radiation, maximum temperature, vapor pressure deficit and wind speed, followed by minimum temperature in order. Ground heat flux was the least sensitive factor. In case of ground surface condition, elevation showed very low positive relative sensitivity. Relativity sensitivities of energy and aerodynamic terms of FAO P-M model were 0.707 for energy term and 0.293 for aerodynamic term respectively, indicating that energy term was more contributable than aerodynamic term for reference evapotranspiration. The monthly relative sensitivities of meteorological factors showed the seasonal effects, and also the relative sensitivity of elevation showed different pattern each other among study stations. Therefore, for the application of FAO P-M model, the seasonal and regional sensitivity differences of each input variable should be considered.

Variation of Crop Coefficient With Respect to the Reference Crop Evapotranspiration Estimation Methods in Ponded Direct Seeding Paddy Rice (담수직파재배 논벼의 기준작물 잠재증발산량 산정방법별 작물계수의 변화)

  • 정상옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.114-121
    • /
    • 1997
  • In order to provide basic information for the estimation of evapotranspiration in the ponded direct seeding paddy field, both field lysimeter experiment and model prediction were performed to estimate daily ET. Various methods were used to predict daily reference crop ET and crop coefficients. Measure4 mean daily ET during the 1995 growing season varied from 5.9 to 6.1 mm depending on the species, while it varied from 5.1 to 5.5 mm in 1996. Model predicted mean daily ET during the 1995 growing season varied from 3.9 to 4.9 mm depending on the prediction model, while it varied from 3.5 to 4.7 mm in 1996. The smaller ET values both measured and predicted in 1996 were caused by the low values of temperature, sunshine hours, and solar radiation. Crop coefficients varied from 1.20 to 1.50 in 1995 depending on the prediction model, while it varied from 1.10 to 1.47 in 1996. Comparison of the seven reference crop ET prediction methods used in this study shows that the Penman-Monteith method and the FAO-Radiation method gave the lowest ET while the corrected Penman method and the Hargreaves method gave the largest ET. Since crop coefficients vary to a large extent based on the prediction methods, reference crop ET prediction method should be carefully selected in irrigation planning.

  • PDF

Estimation of the Reference Evapotranspiration using Daily Sunshine Hour (일조시간을 이용한 기준 증발산량 추정)

  • Lee, Khil-Ha;Cho, Hongyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.627-640
    • /
    • 2011
  • 이 논문에서는 일사량과 일조시간에 관한 통상적인 선형관계식보다 정확한 비선형 관계식에 대한 적용검토를 수행한다. 일조시간을 이용한 일사량 추정에 이어서 Penman-Monteith 방정식을 이용하여 기준 증발산량을 추정하였다. 우리나라 20개 지점의 1997년부터 2006년까지의 일사량 및 일조시간 자료를 포함한 기상자료를 이용하여 선형 그리고 수정 비선형 Angstrom 방정식을 보정하고 기준 증발산량을 추정하였다. 일조시간과 일사량 사이의 선형과 비선형 관계식을 이용한 기준 증발산량의 상대비교를 수행하였다. 선형 및 비선형 관계식을 이용한 방법 모두 RMS 오차는 5.96, NSC(Nash-Sutcliffe Coefficient)는 0.95로 추정되었고, 그 차이는 매우 미미하였다. 그러나 상대적으로 일사량이 기준 증발산량에 크게 기여하는 하계에는 그 차이가 증가하기 때문에 보다 개선된 비선형 관계식을 이용하는 방법에 대한 엄밀한 검토가 필요하다.