DOI QR코드

DOI QR Code

Calibration and Validation of the Hargreaves Equation for the Reference Evapotranspiration Estimation in Gyeonggi Bay Watershed

경기만 유역의 기준 증발산량 산정을 위한 Hargreaves 공식의 보정 및 검정

  • 이길하 (한국해양연구원 연안개발연구본부) ;
  • 조홍연 (한국해양연구원 연안개발연구본부) ;
  • 오남선 (목포해양대학교 해양시스템공학부)
  • Published : 2008.04.30

Abstract

It is essential to locally adjust the Hargreaves parameter for estimating reference evapotranspiration with short data as a substitute of Penman-Monteith equation. In this study, evaluation of daily-based reference evapotranspiration is computed with Hargreaves equation. in Gyeonggi bay area including Ganghwa, Incheon, Suwon, Seosan, and Cheonan station for the time period of 1997-2004. Hargreaves coefficient is adjusted to give the best fit with Penman-Monteith evapotranspiration, being regarded as a reference. Then, the preferred parameters are validated for the same stations for the time period of 2005-2006. The optimization-based correction in calibration for 1997-2004 shows improved performance of the Hargreaves equation, giving 0.68-0.77 to 0.92-0.98 in Nash-Sutcliffe coefficient of efficiency (NSC) and 14.63-23.30 to 5.23-11.75 in RMSE. The validation for 2005-2006 shows improved performance of the Hargreaves equation, giving 0.43-0.85 to 0.93-0.97 in NSC and 14.43-26.81 to 6.48-9.09 in RMSE.

기상자료가 부족하거나 결측 지역의 기준 증발산량 산정을 위하여 Penman-Monteith (PM) 공식을 이용한 Hargreaves 공식의 매개변수 추정을 수행할 필요가 있다. 본 연구에서는 경기만 유역에 위치한 강화, 인천, 수원, 서산, 천안의 1997년$\sim$2004년 기상자료를 바탕으로 PM 공식을 이용하여 계산한 기준 증발산량(이하 ETo)을 이용하여 Hargreaves 공식의 매개변수를 추정하였으며, 추정된 매개변수를 이용하여 2005년$\sim$2006년의 PM 공식을 이용한 ETo 결과와 비교하여 검정을 수행하였다. 그 결과, 매개변수 조정 전 RMS 오차는 $14.63{\sim}23.30$ 정도로 파악되었으며, 모형의 검정에서도 $14.43{\sim}26.81$ 정도로 유사한 범위를 보이고 있다. 한편, Nash-Sutcliffe 일치계수는 $0.68{\sim}0.77$이며, 검정과정에서는 $0.43{\sim}0.85$로 대부분의 지역이 추정효율이 아주 떨어지는 것으로 나타났다. 반면, Hargreaves 계수를 조정한 경우, RMS 오차는 $5.23{\sim}11.75$ 정도로 파악되었으며, 모형의 검정에서도 $6.48{\sim}9.09$정도로 매개변수 조정전에 비하여 크게 감소하고 있음을 알 수 있으며, 한편, NSC는 $0.92{\sim}0.98$이며, 검정과정에서는 $0.93{\sim}0.97$로 대부분의 지역에서 추정효율이 크게 향상되는 것으로 나타났다.

Keywords

References

  1. 김남원, 김철겸 (2004). “유역증발산 산정을 위한 Penman-Monteith 방법과 Morton CRAE 방법의 비교.” 한국수자원학회 2004 학술대회지, pp. 1077-1081
  2. 배덕효, 김진훈 (2006). “확률론적 중장기 댐 유입량 예측(I) - 장기유출해석.” 한국수자원학회논문집, 한국수자원학회, 제39권, 제3호, pp. 261-274 https://doi.org/10.3741/JKWRA.2006.39.3.261
  3. 이길하, 오남선, 정신택 (2007). “우리나라 연안의 pan증발량 변화 양상 분석.” 한국해안.해양공학회지, 한국해안.해양공학회, 제19권, 제3호, pp. 244-252
  4. 임창수 (2007). “도시화에 따른 수문기후변화 II (도시화가 기준 증발산량에 미치는 영향).” 한국수자원학회논문집, 한국수자원학회, 제40권, 제7호, pp. 571-583 https://doi.org/10.3741/JKWRA.2007.40.7.571
  5. 채효석, 김성준, 정관수 (1999). “격자기반의 일 증발산량 추정모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 721-730
  6. Allen, R. G., Smith, M., Perrier, A., and Pereira, L.S. (1994). "An update for the definition of the reference evapotranspiration." ICID Bulletin, New Delhi, Vol. 43, No. 2, pp. 1-34
  7. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). "Crop evapotranspiration: guidelines for computing crop requirements." Irrigation and Drainage Paper 56. United Nations-Food and Agricultural Organization (FAO), Rome, Italy
  8. Gavilan, P., Lorite, I. J., Tornero, S., and Berengena, J. (2006). "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment." Agricultural Water Management, Vol. 81, No. 3, pp. 257-281 https://doi.org/10.1016/j.agwat.2005.05.001
  9. Grismer, M. E., Ornag, M., Snyder, R., and Matyac, R. (2002). "Pan Evaporation to Reference Evapotranspiration Conversion Methods." J. of Irrigation and Drainage Engineering, ASCE, pp. 180-184 https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(180)
  10. Hargreaves, G. H. (1975). "Moisture availability and crop production." Transaction on ASAE, Vol. 18, No. 5, pp. 980-984 https://doi.org/10.13031/2013.36722
  11. Hargreaves, G. H. (1994). "Defining and using reference evapotranspiration." Journal of Irrigation and Drainage engineering-ASCE, Vol. 120, No. 6, pp. 1132-1139 https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)
  12. Hargreaves, G. H. and Allen, R. G. (2003). "History and Evaluation of Hargreaves Evapotranpiration." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 129, No. 1, pp. 53-63 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:1(53)
  13. Hargreaves, G. H. and Samani, Z. A. (1982). "Estimating potential evapotranspiration." Journal of Irrigation and Drainage Engineering, Vol. 108, No. 3, pp. 223-230
  14. Hargreaves, G. H. and Samani, Z. A. (1985). "Reference crop evapotranspiration from temperature." Applied Engineering in Agriculture, Vol. 1, No. 2, pp. 96-99 https://doi.org/10.13031/2013.26773
  15. Irmak, S., Allen, R. G., and Whitty, E. B. (2003a). "Daily grass and alfalfa-reference-Evapotranpiration calculations as part of the ASCE standardization effort." Journal of Irrigation and Drainage Engineering-ASCE, Vol. 129, No. 5, pp.360-370 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(360)
  16. Jensen, M. E. (1966). "Empirical methods of estimating or predicting evapotranspiration using radiation." Proceedings of Evapotranspiration and its Role in Water Resources Management, Chicago
  17. Jensen, M. E. and Haise, H. R. (1963). "Estimating evapotranspiration from solar radiation." Journal of Irrigation and Drainage Engineering-ASCE, Vol. 89, pp. 15-41
  18. Jensen, M. E., Robb, D. C. N., and Franzoy, C. E. (1970). "Scheduling irrigations using climate-cropsoil data." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 96, No. 1, pp. 25-38
  19. Maidment, D. R. (1993). (Editor in Chief). Handbook of Hydrology, Chap 4., McGraw-Hill Inc
  20. Nash, J. E. and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models, I: A Discussion of principles." Journal of Hydrology, Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  21. Pereira, A. R. (2004). "The Priestly-Taylor parameter and the decoupling factor for estimating reference evapotranspiration." Agricultural and Forest Meteorology, Vol. 125, pp. 305-313 https://doi.org/10.1016/j.agrformet.2004.04.002
  22. Pereira, L.S., Perrier, A., Allen, R.G. and Alves, I. (1999). "Evapotranspiration : Concepts and Future Trends." J. of Irrigation and Drainage Engineering, Vol. 125, No. 2, ASCE, pp. 45-51 https://doi.org/10.1061/(ASCE)0733-9437(1999)125:2(45)
  23. Priestly, C. H. B. and Taylor, R. J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, No. 2, pp. 81-92 https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  24. Samani, Z. A. (2000). "Estimating solar radiation and evapotranspiration using minimum climatological data." Journal of Irrigation and Drainage engineering, ASCE, Vol. 126, No. 4, pp. 265-267 https://doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
  25. Vanderlinden, K., Giraldez, J. V., and Meirvenne, M. V. (2004). "Assessing Reference Evapotranspiration by the Hargreaves Methods in Southern Spain." Journal of Irrigation and Drainage Engineering, ASCE, Vol. 130, No. 3, pp. 184-191 https://doi.org/10.1061/(ASCE)0733-9437(2004)130:3(184)

Cited by

  1. Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea vol.46, pp.9, 2013, https://doi.org/10.3741/JKWRA.2013.46.9.933
  2. Analysis of Reference Evapotranspiration Change in Korea by Climate Change Impact vol.18, pp.7, 2018, https://doi.org/10.9798/KOSHAM.2018.18.7.71