• Title/Summary/Keyword: Reference Cutting Condition

Search Result 16, Processing Time 0.031 seconds

Determination of Optimal Cutting Conditions Based on the Relationship between Tool Grade and Workpiece Material (피삭재와 공구재종의 상관관계에 근거한 적정 절삭조건의 결정)

  • 한동원;고성림;이건우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.79-89
    • /
    • 1998
  • In determining optimal cutting condition for face milling operation, tool wear is an important factor. For the purpose of establishing the relationship between various machining factors and tool wear, cutting tests have been performed. As a result, hardness and chemical composition of workpiece material, chemical composition and grain size of cutting tool and cutting speed have been selected as machining factors. In addition, relationship between feed rate and workpiece hardness has been observed. Prior to utilizing cutting conditions recommended by ‘Machining Data Handbook(MDH)’ as a knowledge base, an analysis for the validity of the MDH has been provided. Based on this analysis, tool life criteria applied by MDH has been modified. Finally, using MDH recommended data for neural network trainning, the results from the trained neural network for optimal cutting condition for some given workpiece and cutting tool can be used as reference cutting conditions.

  • PDF

Development of Accurate Cutting Simulation and Feedrate Scheduling System for CNC Machining (CNC 가공의 정밀 절삭 시뮬레이션 및 이송속도 스케줄링 시스템 개발)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.370-375
    • /
    • 2004
  • This paper presents an accurate cutting simulation and feedrate scheduling system for CNC machining. This system is composed of a cutting simulation part and a feedrate scheduling part. The cutting simulation part computes the geometric informations and calculates the cutting forces in CNC machining. The cutting force model using cutting-condition-independent coefficients was introduced for flat end milling and ball end milling. The feedrate scheduling part divides original blocks of NC code into smaller ones with optimized feedrates to adjust the peak value of cutting forces to reference forces. Some machining examples show that the developed system can control the cutting force at desired levels.

  • PDF

Development of Tool Fracture Index for Detection of Tool Fracture in Milling Process (밀링시 공구 파손 검출을 위한 공구 파손 지수의 도출)

  • 김기대;오영탁;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.881-888
    • /
    • 1997
  • A new algorithm for detection of tool fracture in milling process was developed. The variation of the peak-to-valley value of cutting load was used in this algorithm. Various kinds of vectors representing the condition of tool, such as tool condition vector, reference tool condition vector, tool condition variation vector were defined. Using these vectors, tool fracture index which represents the magnitude of tool fracture and is independent of tool run-outs is developed. Small and large tool fracture and chipping under various cutting condition could be detected using proposed tool fracture index, which was proved with cutting force model and experiments.

  • PDF

Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining (CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발)

  • 고정훈;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

Integrated NURBS Surface Interpolator Considering Both Rough and Finish Cuts (황삭 및 정삭을 고려한 통합형 NURBS 곡면 인터폴레이터)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1958-1966
    • /
    • 2003
  • Three-axis CNC surface machining entails a series of processes including rough cutting, intermediate cutting and finish cutting for a reference surface defined in CAD/CAM. This study is targeting development of an integrated NURBS surface interpolator that can incorporate rough, intermediate and finish cutting processes. In each process, volume to be removed and cutting condition are different according to the shape of a part to be machined and the reference surface. Accordingly, the proposed NURBS surface interpolator controls motion in real-time optimized for the machining conditions of each process. In this paper, a newly defined set of G-codes is proposed such that NURBS surface machining through CNC is feasible with minimal information on the surface composition. To verify the usefulness of the proposed interpolator, through computer simulations on NURBS surface machining, total machining time, size of required NC data and cutting force variations are compared with the existing method.

DEVELOPMENT OF A VIRTUAL MACHINING SYSTEM FOR ESTIMATION OF CUTTING PERFORMANCE

  • Ko, Jeong-Hoon;Cho, Dong-Woo;Yun, Won-Soo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.288-294
    • /
    • 2001
  • Present CAM technology cannot provide important physical property such as cutting farce and machined surface. Thus, the selection of cutting conditions still depends on the experience of an expert or on the machining data handbook in spite of the developed CAM technology. This paper presents an advanced methodology to help the worker to determine optimum cutting condition for CHC machining that excludes the need for expertise of machining data handbook. The virtual machining system presented in this paper can simulate the real machining states such as cutting farce and machined surface error. And virtual machining system can schedule feed rate to adjust the cutting force to the reference force.

  • PDF

Optimization of Cutting Conditions Using Heuristic Modification (휴리스틱 보정에 의한 절삭조건의 최적화)

  • Park, Byoung-Tae;Park, Myon-Woong
    • IE interfaces
    • /
    • v.8 no.3
    • /
    • pp.231-239
    • /
    • 1995
  • 일반적으로 공정설계자는 실제 절삭을 위하여 각 공정의 표준 절삭조건에 대하여 적적한 보정을 수행한다. 이러한 보정과정에서 사용되는 지식은 경험에 바탕을 둔 것이므로 이의 시스템화는 경험 지향적인 방법론(Experience-Oriented Method)을 요구한다. 본 논문에서는 밀링 공정을 대상으로, 검색된 표준 절삭조건에 대하여 최적의 절삭조건을 결정하기 위한 방법과 제안된 방법에 의해 개발된 시스템을 소개한다.

  • PDF

A Study on Detection of Lane and Situation of Obstacle for AGV using Vision System (비전 시스템을 이용한 AGV의 차선인식 및 장애물 위치 검출에 관한 연구)

  • 이진우;이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2000
  • In this paper, we describe an image processing algorithm which is able to recognize the road lane. This algorithm performs to recognize the interrelation between AGV and the other vehicle. We experimented on AGV driving test with color CCD camera which is setup on the top of vehicle and acquires the digital signal. This paper is composed of two parts. One is image preprocessing part to measure the condition of the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle.

  • PDF

A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts (대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구)

  • Park, Chulsoon;Bae, Sungmoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

A Study on Detection of Lane and Displacement of Obstacle for AGV using Vision System (비전시스템을 이용한 자율주행량의 차선내 차량의 변위 검출에 관한 연구)

  • Lee, Jin-Woo;Choi, Sung-Uk;Lee, Chang-Hoon;Lee, Yung-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2202-2205
    • /
    • 2001
  • This paper is composed of two parts. One is image preprocessing part to measure the condition of the lane and vehicle. This finds the information of lines using RGB ratio cutting algorithm, the edge detection and Hough transform. The other obtains the situation of other vehicles using the image processing and viewport. At first, 2 dimension image information derived from vision sensor is interpreted to the 3 dimension information by the angle and position of the CCD camera. Through these processes, if vehicle knows the driving conditions which are lane angle, distance error and real position of other vehicles, we should calculate the reference steering angle by steering controller.

  • PDF