• Title/Summary/Keyword: Reduction strategies

Search Result 686, Processing Time 0.028 seconds

Graphene Anode Material Technology Patent Trend Analysis for Secondary Battery (이차전지용 그래핀 음극소재 기술 특허 동향 분석)

  • Jae Eun Shin;Junhee Bae
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.661-669
    • /
    • 2022
  • The need for miniaturization, high efficiency, and green energy resources as an energy storage device through the development of various electronic device has emerged. Accordingly, nanomaterials with excellent electrochemical properties, such as graphene and graphene hybrids, are attracting attention as promising materials. In particular, in the electric vehicle industry, cost reduction of secondary batteries is a key factor that can determine the spread of related industries, and it is most important to analyze R&D trends for battery material technology and respond to future technological development directions. Therefore, in this study, we tried to suggest a direction for R&D activities in the future by analyzing patent trends for graphene anode material technology for secondary batteries and deriving implications. As a result, in the case of anode material technology, the proportion of foreigners in the US and European patent markets was higher than in the Korean and Japanese patent markets, which means that the US and European marketability is high. In addition, Japanese applicants are filing high-level applications not only in the Japanese patent market but also in other countries suggests that Japan is leading the technology in this field. Lastly, the proportion of research institutes in the patent market of Korea and the US remains high compared to that of Japan and Europe, indicating that the commercialization of technology is still slow in those countries. Therefore research institutes and companies in Korea will have to establish their own strategies for developing and securing materials using the results of patent trends in major countries and major companies analyzed in this study.

Effect of Extracted Tempered Glass from End-of-Life Solar Panels on Mechanical Properties of Mortar (사용수명이 종료된 태양광 패널에서 분리된 강화유리가 모르타르의 역학적 특성에 미치는 영향)

  • So Yeong Choi;Sang Woo Kim;Il Sun Kim;Eun Ik Yang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 2023
  • As the installation of solar panel accelerates, so does the number of solar panels reaching their end-of-life (EOL). However, the EOL solar panels is becoming a concern, as they contain potentially hazardous materials and are not easily recycled. Coping strategies such as effective collection, disposal, and recycling methods will be important to manage the growing number of EOL solar panels in the coming years.Therefore, many studies have focused on the development of EOL solar panel recycling technology. One recycling technology for EOL solar panels applicable to the construction field is the application of extracted tempered glass from EOL solar panels as construction materials. This study summarized the EOL solar panel disassembly technology and evaluated the mechanical properties of mortar using extracted tempered glass as fine aggregate. The results showed that when tempered glass was used as a fine aggregate in mortar, the compressive strength, flexural strength, and macro pores in the 1-3 ㎛ with 200-300 ㎛ range were affected, regardless of the disassembly technology of EOL solar panels. Especially, we found that the mechanical performance of mortar using chemically treated tempered glass was noticeably decreased due to changes in the chemical composition of the extracted tempered glass resulting from the removal of K2O and CuO due to chemical reactions. Meanwhile, it was found that when fly ash was used as a binder, the reduction of mechanical performance could be alleviated.

The Impact of Work Stress and Job Satisfaction on Turnover Intention: A Study of Long-term Care Workers (노인장기요양 인력의 직무 스트레스와 직무 만족이 이직 의도에 미치는 영향)

  • Lee, Choo-Jae
    • 한국노년학
    • /
    • v.31 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • The present study examined the impact of work stress and job satisfaction on intention to leave among staff including social workers, nurses, and care workers. The study subject included 235 staff in a welfare organization that provides long-term care services. Data was analyzed using multiple linear regression. The findings of the study show that work stress and job satisfaction affect intention to leave in the context of welfare organizations. Demographic variables were not the main focus of this study and thus these results are incidental. Staff with higher levels of work stress were more likely to think about leaving, while those with grater job satisfaction were less likely. There were several limitations in this study. Generalizability of the findings are limited to staff working in the province of Jeonnam. The results have important implications for the development of strategies to minimize turnover intention in long-term care. Reducing the intent to leave is desirable for issues of both cost reduction and quality of care. Managers could perhaps start to consider decreasing work overload assigned to staff. This study also provides some insight into the work status of new staff. Clearly this finding needs to be explored in further research studies. A more comprehensive model is likely required to adequately explain intention to leave the job.

Effects of Country-of-Origin Dimensions on Product Evaluations: A Role of Motivational Focus (원산지 개념의 구성 차원이 소비자의 제품평가에 미치는 영향: 동기성향의 효과)

  • Shin, Sohyoun;Kim, Sanguk;Chaiy, Seoil
    • Asia Marketing Journal
    • /
    • v.10 no.2
    • /
    • pp.71-98
    • /
    • 2008
  • Considerably many numbers of studies on country-of-origin(hereafter COO) effects have been presented in international business and marketing areas. Recent studies have been included the effects of COO of manufacture, parts, and design, as well as the effects of brand origin, reflected by the accelerating convergent manufacture circumstances and increasingly competitive environments. Moderating constructs such as knowledge of product category and involvement as individual variables, have been also introduced and researched in various angles. In addition, how the effects of COO occur as processes is also argued in previous studies. This research has attempted to explain business corporation's strategic decisions on choosing a domain of its product manufacturing for several critical reasons, for cost reduction or better image. We displayed two constructs of brand and manufacture in a positive and negative country image group to reconfirm the existence of the effects of COO. Additionally, the effects of respondents' regulatory fit between their motivational focus and the contents of product messages, have been declared. Furthermore the respondents' motivational focus moderates the main effect of COO on product evaluations in a positive 'made-in' combination, while, surprisingly, it does not statistically moderate in a negative, except attitude. Based on the results, implications and suggestions on how to plan and execute more effective marketing strategies regarding COO dimensions, especially COO of manufacture, are separately presented for each situations when it has already been determined and when it is to be.

  • PDF

A Study on Ventilation Characteristics in Fuel Preparation Room of Hydrogen Fueled Vessel (수소추진선박의 연료준비실내의 환기특성에 관한 연구)

  • Bo Rim Ryu;Phan Anh Duong;Quoc Huy Nguyen;Hokeun Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.158-159
    • /
    • 2022
  • Due to the climate crisis, various environmental regulations including greenhouse gas reduction are in effect. This is not limited to any specific industry sector, but is affecting the entire industry worldwide. For this reason, the IMO and governments of each country are announcing strategies and policies related to the shipbuilding and shipping industries. The current regulations can be partially resolved through additional facilities such as scrubbers while using existing fossil fuels, but ultimately, the emission of greenhouse gases such as CO2 from the exhaust gases generated by ships must be restricted through energy conversion. To this end, it is necessary to develop fuels that can replace traditional fuels such as oil and natural gas. Among them, hydrogen is attracting attention as a clean energy that does not emit pollutants when used as a fuel. However, hydrogen has a wide explosive range and a fast dispersion speed, so research on this is necessary. Therefore, in this paper, when hydrogen leakage occurs in the fuel preparation room of a hydrogen-powered ship, the trend was analyzed and the ventilation characteristics were investigated.

  • PDF

Substrate Selection and Burying Behaviour of Sand-dwelling Endangered Freshwater Fish, Gobiobotia naktongensis (멸종위기 야생생물I급 흰수마자의 모래 선택과 잠입 행동에 관한 연구)

  • Keun-Sik Kim;Moon-Seong Heo;Jin Kim;Chang-Deuk Park;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • To determine the cause of the population decline in Gobiobotia naktongensis, substrate preference and burying behaviour were investigated in this study. In general, the species was shown to prefer a substrate size of 1 mm or less, depending on the flow. In addition, the burying depth varied according to the size of the fish and increased with a decrease in water temperature. Our findings showed that the main cause of the population reduction was the physical changes in the substrate structure due to the dams or barrages construction. Notably, the accumulation of silt and mud in the substrate upon the formation of an upstream lentic water region for structural construction and bed armouring caused by scouring and reduced downstream inflow of fine sediment were deterministic in the fish habitat changes, causing problems in burying. As sand substrate structure is critical for the survival and inhabitation of psammophilous species, efficient strategies should be developed with proper habitat management to reduce the anthropogenic damage

ESG Evaluation and Response of Construction Companies in Korea (국내 건설기업의 ESG 평가 및 대응방안)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.785-796
    • /
    • 2023
  • The adoption of Environmental, Social, and Governance(ESG) practices in domestic construction firms is predominantly driven by major corporations. These companies not only publish reports on their ESG management but also engage in a meticulous process of identifying key issues and setting priorities. This process entails an in-depth evaluation of the severity of various issues and the gathering of insights from experts in the field. Interestingly, a comparative analysis of ESG assessments for construction companies, both domestically and internationally, reveals significant discrepancies in outcomes. These differences stem from the varied evaluation methodologies and criteria employed by different assessing bodies. Addressing this gap, our study proposes a suite of strategies aimed at bolstering ESG management within the construction sector. We advocate for enhanced policy support and financial backing, especially targeting small and medium-sized enterprises(SMEs) to facilitate their engagement in ESG practices. A critical step forward involves the standardization and transparent disclosure of ESG evaluation criteria, tailored to reflect the unique aspects of the construction industry. Moreover, the standardization and publication of ESG assessments for subcontractors are essential, equipping them with the necessary tools for effective ESG management and evaluation. Given the global nature of construction projects, particularly those commissioned by the European Union in regions like Africa and East Asia, adherence to ESG standards is imperative. Our long-term vision includes the development of a comprehensive database detailing ESG regulations and their impacts, segmented by region and country. This repository will serve as a valuable resource for companies venturing into international construction projects.

Investigating Defect Types and Causative Factors in the Seismic Retrofitting of Educational Facilities (학교시설 내진보강공사 시 발생하는 하자 유형 및 하자 발생 요인 연구)

  • Kim, Moon Sik;Jung, Dae Gyo;Park, Hyun Jung;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2024
  • This research addresses the types and causes of defects in seismic retrofitting projects of school facilities, which, following the Gyeongju and Pohang earthquakes in September 2016 and November 2017 respectively, have been identified as having comparatively lower seismic resilience among public buildings. The incidence of seismic retrofitting has notably increased in the subsequent years, raising concerns about the potential for defects arising from these efforts. The government has committed to enhancing the seismic resilience of all public facilities by 2035, with a specific focus on completing upgrades for educational establishments by 2029. Although prior investigations have explored construction defects in school facilities, there exists a gap in research specifically targeting defects within seismic retrofitting processes. Thus, this study aims to catalog the defects associated with seismic retrofitting efforts and analyze their underlying causes to identify crucial management strategies for defect mitigation. Furthermore, by examining the interplay between defect types and their causative factors, the study seeks to pinpoint essential management practices that could preempt defects during the construction phase, ultimately aiding in the reduction of future maintenance expenditures.

Evaluating the Influence of Post-Earthquake Rainfall on Landslide Susceptibility through Soil Physical Properties Changes (지진이후 강우의 산사태 발생 영향성 평가를 위한 토양물성값 변화 분석)

  • Junpyo Seo;Song Eu;KiHwan Lee;Giha Lee;Sewook Oh
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.270-283
    • /
    • 2024
  • Purpose: Considering the rising frequency of earthquakes in Korea, it is crucial to revise the rainfall thresholds for landslide triggering following earthquake events. This study was conducted to provide scientific justification and preliminary data for adjusting rainfall thresholds for landslide early warnings after earthquakes through soil physical experiments. Method: The study analyzed the change in soil shear strength by direct shear tests on disturbed and undisturbed samples collected from cut slopes. Also, The study analyzed the soil strength parameters of remolded soil samples subjected to drying and wetting conditions, focusing on the relationship between the degree of saturation after submergence and the strength parameters. Result: Compaction water content variation in direct shear tests showed that higher water content and saturation in disturbed samples led to a significant decrease in cohesion (over 50%) and a reduction in shear resistance angle (1~2°). Additionally, during the ring shear tests, the shear strength was observed to gradually decrease once water was supplied to the shear plane. The maximum shear strength decreased by approximately 65-75%, while the residual shear strength decreased by approximately 53-60%. Conclusion: Seismic activity amplifies landslide risk during subsequent rainfall, necessitating proactive mitigation strategies in earthquake-prone areas. This research is anticipated to provide scientific justification and preliminary data for reducing the rainfall threshold for landslide initiation in earthquake-susceptible regions.

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.