• Title/Summary/Keyword: Reduction scenarios

Search Result 370, Processing Time 0.022 seconds

Prediction of Potential $CO_2$ Reduction through Ground Transportation Modal Shift with Fu7el Type and Scenarios (연료원별 온실가스배출량을 고려한 육상교통수단에서의 Modal Shift 효과)

  • Kim, Cho-Young;Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.521-527
    • /
    • 2011
  • Korea announced GHG reduction goal, 30% reduction compare with 2020 BAU and reduction target for each industry sector is planning. Transportation sector also trying to make effective technical and political counterplan of allocated GHG reduction target such as material lightening, energy efficiency improvement and Modal shift technology and so on. Modal Shift is shifting low energy efficiency vehicle to high energy efficiency vehicle which is economically meaningful under current market conditions. We can get not only energy efficiency improvement but also GHG reduction effect through modal shift. Modal Shift is effectively applying and studied in logistics field in Europe and Japan and one of the Indian companies has been registered CDM project activity involving modal shift from roadways to railways for finished goods. In this study, the scenarios are developed with detail modal shift ratio and fuel type base on state of road and rail use and GHG emission factor for each fuel type from MLTM. This result can be used as basic information to improve policies and promote increasing use of train which is more environment friendly transportation vehicle.

  • PDF

A Study on an Reduction Methodology for Acid Rain Causing Material in Cement Industries - Focus on Sulfur Dioxide Emission Reduction Measures - (시멘트공업에 있어서 산성비 원인물질 저감방안 평가에 관한 연구 - 아황산가스를 중심으로 -)

  • Lee, Dong Kun;Jung, Tae Yong;Jeon, Seong Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 1999
  • This study focuses on one of typical energy-intensive industries, the cement industry. The purpose of the study is to propose $SO_2$ emission reduction measures in the cement industry. This study partially employed and modified AIM(Asia-Pacific Integrated Model) developed by Japan National Environmental Research Institute to develop AIM/KOREA SULFUR model for simulation. In the study, a base scenario, and mitigation scenarios(a use of low-sulfur contain fuel, fuel conversion to cleaner energy, an induction of desulfurization systems, and energy saving) were employed. The results of the simulation are summarized below: The sulphur dioxide emission from the cement industry in 1992 was estimated to be 106,000 metric tons; however, according to base scenario, sulphur dioxide emission is expected to be increased to 219,000 metric tons, which is 2.1 times greater than that in 1992 by year 2020. To alleviate such increasement, simulation results under various scenarios proved that some degrees of reduction may be possible by an induction of desulfulization systems although there may be numerous ways to interpretate the simulation results.

  • PDF

Analysis of Greenhouse Gas Reduction Potentials in a University using Bottom-up Model (상향식 모형을 이용한 대학의 온실가스 감축 잠재량 평가)

  • Yoo, Jung-Hwa;Park, Nyun-Bae;Jo, Mi-hyun;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.183-193
    • /
    • 2012
  • In this study, the S University's energy usage, greenhouse gas emissions situation and potential reduction amount were analyzed using a long-term energy analysis model, LEAP. In accordance with the VISION 2020 and university's own improvement plans, S University plans to complete a second campus through expansion constructions by 2020 and by allocating the needed land. Accordingly, increases in energy usage and greenhouse gas emissions seem inevitable. Hence, in this study, the calculations of potential reduction amount by 2020 were attempted through the use of LEAP model by categorizing the energy used based on usage types and by proposing usage typebased reduction methods. There were a total of 4 scenarios: a standard scenario that predicted the energy usage without any additional energy reduction activity; energy reduction scenario using LED light replacement; energy reduction scenario using high efficiency building equipment; and a scenario that combines these two energy reduction scenarios. As scenario-based results, it was ascertained that, through the scenario that had two other energy reduction scenarios combined, the 2020 greenhouse gas emissions amount would be 14,916 tons of $CO_2eq$, an increase of 43.7% compared to the 2010 greenhouse gas emissions amount. Put differently, it was possible to derive a result of about 23.7% reduction of the greenhouse gas emissions amount for S University's greenhouse gas emissions amount through energy reduction activities. In terms of energy reduction methods, changing into ultra-high efficiency building equipment would deliver the most amount of reduction.

Introduction of the STPA Mechanism to Derivation of Risk Scenarios for Establishment of Disaster Reduction Activity Plans (재해경감활동계획 수립에 위험 시나리오 도출을 위한 STPA기법 도입)

  • Kim, Sang Duk;Lee, Seok Hyung;Kim, Chang Soo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.784-795
    • /
    • 2020
  • Purpose: This study intends to review the risk assessment procedures specified in the corporate disaster management standard. Method: The requirements for each stage of risk assessment stipulated in the corporate disaster management standard were identified, the case of application of the organization'A' and the partner companies were reviewed, and the risk assessment procedure in line with the requirements was reviewed. Result: It was reviewed that it was necessary to clearly define the method and procedure for deriving risk scenarios, which are the requirements of the corporate disaster management standard, and to introduce a standardized procedure for deriving risk scenarios. Conclusion: A method of deriving risk scenarios was implemented by applying the STPA technique based on the system theory for power generation fuel supply and demand, and it was suggested that the STPA technique be reflected in corporate disaster management standards as a risk scenario derivation technique for the establishment of a disaster reduction activity plan.

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

THE SCENARIOS OF GREENHOUSE GAS REDUCTION ON SEOUL NATIONAL UNIVERSITY

  • Sooyoung Kim;Hyun-Soo Lee;Moonseo Park;Kwon-Sik Song
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.213-218
    • /
    • 2013
  • To respond to global warming and climate change, Korean Government has implemented the GHG Target Management, which leads to a voluntary reduction in greenhouse gases from large businesses. Korean universities have put efforts on reducing GHG emissions and energy consumptions in the campuses, however, because of various activities and its characteristic of non-profit organization, establishing a long-term plan for reducing greenhouse gases is necessary. In this research, the Seoul National University's energy usage is analyzed and applicable technologies for reducing GHG emissions are extracted. Hence, three scenarios for performing the GHG Target Management are established. Proposed scenario is available for GHG Target Management and it would be expected to support decision- makings for reducing GHG emissions.

  • PDF

Analysis of Efficiency of Pollution Reduction Scenarios by Flow Regime Using SWAT Model - A case study for Dalcheon Basin - (SWAT 모형을 활용한 유황별 비점오염 저감 효율 분석 - 달천 유역을 대상으로 -)

  • Kim, Soohong;Hong, Jiyeong;Park, Woonji;Kim, Jonggun;Lim, Kyoungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.469-482
    • /
    • 2021
  • The recent climate change and urbanization have seen an increase in runoff and pollutant loads, and consequently significant negative water pollution. The characteristics of the pollutant loads vary among the different flow regime depending on their source and transport mechanism, However, pollutant load reduction based on flow regime perspectives has not been investigated thoroughly. Therefore, it is necessary to analyze the effects of concentration on pollutant load characteristics and reductions from each flow regime to develop efficient pollution management. As non-point pollutants continuously increase due to the increase in impervious area, efficient management is necessary. Therefore, in this study, 1) the characteristics of pollutant sources were analyzed at the Dalcheon Basin, 2) reduction of nonpoint pollution, and 3) reduction efficiency for flow regimes were analyzed. By analyzing the characteristics of the Dalcheon Basin, a reduction efficiency scenario for each pollutant source was constructed. The efficiency analysis showed 0.06% to 5.62% for the living scenario, 0.09 to 24.62% for the livestock scenario, 0.17% to 12.81% for the industry scenario, 9.45% to 38.45% for the land scenario, and 9.8% to 39.2% for the composite scenario. Therefore, various pollution reduction scenarios, taking into account the characteristics of pollutants and flow regime characteristics, can contribute to the development of efficient measurements to improve water quality at various flow regime perspectives in the Dalcheon Basin.

Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change (기후변화에 따른 둑높임 저수지의 용수공급능력 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

Economic Assessment for Flood Control Infrastructure under Climate Change : A Case Study of Imjin River Basin (기후변화를 고려한 홍수방재시설물의 경제성분석 : 임진강 유역사례)

  • Kim, Kyeongseok;Oh, Seungik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • In Imjin River basin, three floods occurred between 1996 and 1999, causing many casualties and economic losses of 900 billion won. In Korea, flood damage is expected to increase in the future due to climate change. This study used the climate scenarios to estimate future flood damage costs and suggested a real options-based economic assessment method. Using proposed method, the flood control infrastructures in Imjin River basin were selected as a case study site to analyze the economic feasibility of the investment. Using RCP (Representative Concentration Pathway) climate scenarios, the future flood damage costs were estimated through simulated rainfall data. This study analyzed the flood reduction benefits through investment in the flood control infrastructures. The volatility of flood damage reduction benefits were estimated assuming that the RCP8.5 and RCP4.5 climate scenarios would be realized in the future. In 2071, the project option value would be determined by applying an extension option to invest in an upgrading that would allow the project to adapt to the flood of the 200-year return period. The results of the option values show that the two investment scenarios are economically feasible and the project under RCP8.5 climate scenario has more flood damage reduction benefits than RCP4.5. This study will help government decision makers to consider the uncertainty of climate change in the economic assessment of flood control infrastructures using real options analysis. We also proposed a method to quantify climate risk factors into economic values by using rainfall data provided by climate scenarios.