• Title/Summary/Keyword: Reduction process

Search Result 6,055, Processing Time 0.037 seconds

A Study on the Reduction of Electric Arc Furnace Dust with Carbon (탄소에 의한 전기로 분진의 환원반응에 관한 연구)

  • 진영주;김영진;박병구;이광학;김영홍;이재운
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • EAF dust generated from electric arc steelmaking process is classified as "hazardous" materials by tbe environmental regulation because of the existence of water leachable heavy metals such as Fe, Zn, Pb, and Cd. However, Fe and Zn among t the elements in the dust can be recovered to high valuable materials by applying a proper process. Therefore, in order to study t the possibility of recovery of iron from EAF dust, the effect oE carbon content and basicity, of synthesized EAF dust on the reduction rate of iron oxide was studied. Experimental results are as follows: TIle softening and melting temperature of the slag w was illcreased with increasing carbon addition amount [or carbon reduction eqUIvalent. At the carbon addition amount of 100% for carbon reduction equivalent and basicity of 1.7, reduction rate of $Fe_2O$ in the slag was the highest. The reaction order fur reduction of $Fe_2O$ by carbon was nearly first order.

  • PDF

Electrochemical Reduction of Triphenylphosphine Phenylimide (Triphenylphosphine Phenylimide의 전기화학적인 환원)

  • Pak Chong Min;Wilson M. Gulick, Jr.
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.341-353
    • /
    • 1974
  • The electrochemical reduction of triphenylphosphine penylimide in nonaqueous media has been examined by polarography, cyclic voltammetry, controlled-potential coulometry and electron spin resonance spectroscopy. The reduction of triphenylphosphine phenylimide proceeds by a one-electron transfer to form anion radical which undergoes both protonation and a second one-electron reduction followed by cleavage of the phosphorus-nitrogen double bond. Aniline is a major product. The cleavage of a phosphorus-phenyl bond was also observed after reduction of triphenylphosphine oxide which is one of the major products of the chemical reaction which follow the primary process.

  • PDF

Preparation of Ultrafine Nickel Powders by Wet Reduction Process (습식 환원법에 의한 니켈 미분말의 제조)

  • Lee, Yoon-Bok;Moon, Young-Tae;Shin, Dong-Woo;Kim, Kwang-Ho
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.803-808
    • /
    • 2002
  • Nickel powders were prepared from nickel chloride solution by wet reduction process, and the size control of the particles was investigated with reactant concentration, dispersant agent, and the addition of ethanol as an organic solvent in NiCl$_2$ aqueous solution. The size of the particle decreased with the increase of nickel chloride concentration. Their average particle size were 1.9$\mu\textrm{m}$, 1.6$\mu\textrm{m}$ and $1.5\mu\textrm{m}$ with 0.5M, 0.8M and 1.0M of nickel chloride concentration respectively. The spherical particle was easily controlled by the addition of ethanol as an organic solvent. Especially, in 30 vol% of ethanol, the average particle size and specific surface area were about 0.2$\mu\textrm{m}$ and 8.98m$^2$/g, respectively.

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

Enhancement of Sewage Sludge Dewaterability by H2O2-Oxidation and Mixing with Paper Sludge (하수슬러지 탈수성 개선을 위한 과산화수소 처리 및 제지슬러지 혼합탈수에 관한 연구)

  • Hwang, Sun-Jin;Eom, Hyoung-Choon;Jang, Hyun-Sup;Jang, Kwang-Un;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.508-514
    • /
    • 2004
  • Industrial and municipal wastewater treatment plants produce large amounts of sludge cakes for final disposal. This problem is an inevitable drawback inherent to the activated sludge process. Both the reduction of the amount of sludge produced and improvement of its dewaterability are presently very important issue also in Korea. So many pre-treatment processes have been developed in order to improve sludge dewatering efficiency. In this study the effects of hydrogen peroxide and paper sludge mixing processes were considered as reasonable alternatives to enhance sludge dewaterability. The CST of sludge was significantly decreased, and dewaterability improved by hydrogen peroxide oxidation treatment. The optimum dosage of hydrogen peroxide was proved to be 10mg/g-TS (when TS of sludge was 2%) with the conditions of pH 4 and only 1~2 minutes of reaction time. The mixing of paper sludge with sewage sludge was turned out to be very effective in reduction of sludge cake; 30% of sludge cake reduction was accomplished. Optimum mixing ratio of paper sludge was about 30%(v/v). This process also could save 25% of polymer to be required. These two alternatives are somewhat realistic, but it was concluded that paper sludge mixing process will be the best choice.

Inorgainc fouling and it fouling reduction in direct contact membrane distillation process (직접 접촉식 막 증발공정에서 무기 막오염 특성 분석 및 저감방법)

  • Lee, Tae-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study was aimed to examine inorganic fouling and fouling reduction method in direct contact membrane distillation(DCMD) process. Synthetic seawater of NaCl solution with CaCO3 and CaSO4 was used for this purpose. It was found in this study that both CaCO3 and CaSO4 precipitates formed at the membrane surface. More fouling was observed with CaSO4(anhydrite) and CaSO4·0.5H2O(bassanite) than CaSO4·2H2O(gypsum). CaCO3 and gypsum were detected at the membrane surface when concentrates of SWRO(seawater reverse osmosis) were treated by the DCMD process, while gypsum was found with MED(multi effect distillation) concentrates. Air backwash(inside to out) was found more effective in fouling reduction than air scouring.

The Effect of Heat Treatment on the Tensile Properties of TiNi/6061Al Composites (TiNi/6061Al 복합재료의 인장특성에 미치는 열처리의 영향)

  • Park, Sung-Ki;Shin, Soon-Gi;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.64-68
    • /
    • 2003
  • The 1.6 vol% and 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting for investigating the effect of heat treatment on tensile strength for composites. The tensile strength without T6 treatment at 293 K was increased with increasing the volume fraction of TiNi fiber and at 363 K the higher the pre-strain, the higher the tensile strength. The tensile strength of the composite with $T_{6}$ treatment at 293 K was found to increase with increasing both the amount of pre-strain and the volume fraction of TiNi fiber and was higher than that without $T_{6}$ treatment. It should be noted that the tensile strength 2.5vol%TiNi/6061Al composites rolled at a 38% reduction ratio was the maximum value of 298 MPa. The tensile strength of composites decreased with increasing the reduction ratio over 38% because of the rupture of TiNi fiber.

Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

  • Park ByungHeung;Kang Dae-Seung;Seo Chung-Seok;Park Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.85-93
    • /
    • 2005
  • Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF) . These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li$_{2}$O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  • PDF

Minimization of Warpage in Plastic Injection-Molded Parts Based on the ‘Pick-the-Winner' Rule and Design Space Reduction Method (Pick-the-Winner법과 공간축소법에 기반한 플라스틱 사출성형품의 휨 최소화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1171-1177
    • /
    • 2010
  • This paper presents a robust design procedure for minimizing warpage in plastic injection-molded products, where the Pick-the-Winner rule based on Taguchi's Orthogonal Array experiments and the Design Space Reduction Method are integrated for optimization. Two-step optimization approach is applied to reduce warpage in the part design stage and additionally to minimize the warpage in the process conditions design stage. Taguchi's S/N ratio is introduced as a design metric to evaluate robustness against process variations. The effectiveness of proposed optimization process is shown with an example of warpage minimization problem.