• Title/Summary/Keyword: Reduction of microorganisms

Search Result 312, Processing Time 0.025 seconds

Analysis and Enrichment of Microbial Community Showing Reducing Ability toward indigo in the Natural Fermentation of Indigo-Plant (자연발효 과정에서 인디고에 환원력을 지닌 미생물 커뮤니티 분석과 농화배양)

  • Choi, Eun-Sil;Lee, Eun-Bin;Choi, Hyueong-An;Son, Kyunghee;Kim, Geun-Joong;Shin, Younsook
    • KSBB Journal
    • /
    • v.28 no.5
    • /
    • pp.295-302
    • /
    • 2013
  • Indigo is utilized in various industries including textile dyeing, cosmetics, printing and medicinal products and its reduced form, leuco-indigo, is mainly used in these process. Chemical reducing agent (sodium dithionite, sodium sulfide, etc.) is preferred to use for the formation of leucoindigo in industry. In traditional indigo fermentation process, microorganisms can participate in the reduction of indigo and thus it has been known to reduce environmental pollution and noxious byproducts. However, in fermentation method using microorganisms it is difficult to standardize large scale production process due to low yield and reproducibility. In this study, we attempted to develop the indigo reduction process using microbial flora which was isolated from naturally fermented indigo vat or deduced by metagenomic approach. From the results of library analyses of PCR-amplified 16S rRNA genes from the traditional indigo fermentation vat sample (metagenome), it was confirmed that Alkalibacteriums (71%) was distinctly dominant in population. Some strains were identified after confirming that they become pure culture in nutrient media modified slightly. Four strains were separated in this process and each strain showed obvious reducing ability toward indigo in dyeing test. It is expected that the analyzed results will provide important data for standardizing the natural fermentation of indigo and investigating the mechanism of indigo reduction.

Foodborne Pathogen Reduction을 위한 항균제의 새로운 Delivery System인 Aerosolization

  • O, Se-Uk;Gang, Dong-Hyeon
    • Bulletin of Food Technology
    • /
    • v.18 no.1
    • /
    • pp.91-98
    • /
    • 2005
  • Aims: As a preliminary experiment on new sanitizer delivery tools, the efficacy of aerosolizedsanitizer on foodborne pathogens was investigated in larger model chamber system.Methods: Peroxyacetic acid and hydrogen peroxide were aerosolized in a model system againstartificially inoculated target microorganisms on laboratory media. Cultures of 4 different foodborne pathogens were inoculated and affixed onto 3 different heights (bottom, wall, and ceiling), and 3different orientations (face-down, vertical, and face-down) inside a commercial semi-trailer cabinet(14.6 x 2.6 x 2.8 m). Sanitizer was aerosolized into 2 m droplet size fog and treated for 1 h atambient temperature.Results: Populations of Bacillus cereus, Listeria innocua, Staphylococcus aureus, and Salmonellatyphimurium were reduced by an average of 3.09, 7.69, 6.93 and 8.18 log units per plate, respectively.Interestingly, L. innocua, Staph. aureus, and Salm. typhimurium showed statistically not different (P$\leq$ 0.05) reduction patterns relative to height and orientation that were never expected in a sprayingsystemConclusion and significance: Aerosolized sanitizers diffuse like gaseous sanitizers, so it has greatpotential for use in commercial applications.

  • PDF

Elimination of Microorganisms Contaminated in Red Ginseng Powder by Irradiation Processing (감마선 조사를 이용한 홍삼분말의 오염미생물 제거)

  • Yook, Hong-Sun;Kim, Seong-Ai;Byun, Myung-Woo;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.366-370
    • /
    • 1996
  • Gamma irradiation was applied to red ginseng powder for improving its hygienic quality 7.5 kGy of gamma irradiation completely eliminated the microorganisms contaminated in red ginseng powder. And there was no growth of microorganisms after six months of storage at room temperature. The molds isolated from red ginseng powder were identified as Pen. commune, Asp. niger, Asp. versicolor and Asp. Unguis, the conidia of which showed the decimal reduction dose ($D_{10}$ value) of 0.37-0.50 kGy, 0.24-0.31 kGy, 0.25-0.36 kGy and 0.28-0.41 kGy and inactivation factor of 5.0-6.5, 7.4-9.3, 6.5-9.1 and 6.1-8.4, respectively The radiosensitivity of identified molds' conidia decreased in medium containing red ginseng extract.

  • PDF

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2012
  • Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures

  • Bae, Woo-Chul;Kang, Tae-Gu;Kang, In-Kyong;Won, You-Jung;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.36-39
    • /
    • 2000
  • Toxic hexavalent chromium, Cr(VI), was reduced to a less toxic trivalent chromium form by E. coli ATCC 33456. The suitable electron donor for Cr(VI) reduction was glucose. E. coli ATCC 33456 was more resistant to metal cations than other reported Cr(VI) reducing microorganisms. Cell growth was inhibited by the presence of Cr(VI) in a liquid medium and Cr(VI) reduction accompanied cell growth. With a hydraulic retention time of 20 h, Cr(VI) reducing efficiency was 100% to 84% when Cr(VI) concentration in the influent was in the range of 10 to 40 mg L$\^$-1/. Specific rate of Cr(VI) reduction was 2.41 mg Cr(VI) g DCW$\^$-1/ h$\^$-1/ when 40 mg L$\^$-1/ of Cr(VI) influent was used. This result suggested the potential application of E. coli ATCC 33456 for the detoxification of Cr(VI) in Cr(VI) contaminated wastewater.

  • PDF

Perchlorate Removal by River Microorganisms in Industrial Complexes (산업단지지역 하천 미생물에 의한 퍼클로레이트 제거)

  • Jo, Kang-Ick;Ahn, Yeonghee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Perchlorate ($ClO_4^-$) is an emerging contaminant of soil/groundwater and surface water. $ClO_4^-$ has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. $ClO_4^-$ is highly soluble and very stable in water. Biodegradation by $ClO_4^-$-reducing bacteria (PRB) is considered the most important factor in natural attenuation of $ClO_4^-$. Rivers in an industrial complex have potential to be contaminated with $ClO_4^-$ discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze $ClO_4^-$-degradation potential of river microorganisms. The results of 83-h batch culture showed that $ClO_4^-$-removal efficiency of all samples was 0.77% or less without addition of an external electron ($e^-$) donor. However $ClO_4^-$-removal efficiency was higher when an $e^-$ donor (acetate, thiosulfate, $S^0$, or $F^0$) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of $e^-$ donor and site of sampling. When acetate was used as an $e^-$ donor, the highest $ClO_4^-$-removal efficiency was observed among the $e^-$ donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of $ClO_4^-$ by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of $ClO_4^-$ biodegradation for in situ bioremediation.

A Study on the Operation Condition for Carbon-Nitrogen Removal in Wastewater and Sludge Reduction using PVA-gel Immobilized Microorganism (PVA-gel 미생물 고정화 담체를 이용한 고도하수처리 및 슬러지 감량화 운전조건 연구)

  • Lee, Jin-Sook;Park, Hyung-Whan;Nam, Duk-Hyun;Park, Chul-Hwi;Jung, In-Ho;Yoo, Young-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.875-883
    • /
    • 2006
  • The carbon and nitrogen removal process using PVA-gel (Polyvinyl Alcohol) immobilized microorganisms was studied. The process has been operated under diverse process conditions for 12 months. The process consists of denitrification with internal recycle of 300%, nitrification, aerobic digestion reactors and settling tank. Nitrificatoin and nitrogen removal efficiency according to gel packing ratio and temperature were studied. Yield for Heterotrophs ($Y_H$), decay coefficient for Heterotrophs($b_H$) in aerobic digestion reactor were determined to seize sludge reduction mechanism and compared with typical data of activated sludge process. Then SRT in aerobic digestion reactor was determined on an experimental basis and sludge reduction efficiency was calculated. The process was implemented successfully with sludge reduction efficiency of 92.0~98.5% on a basis of biomass.

Characteristics of Microorganisms Contaminating Seafood Cooking Drips Exposed to Gamma Irradiation (감마선 조사된 수산 자숙액의 오염 미생물군 특성)

  • Choi, Jong-Il;Kim, Yeon-Joo;Kim, Jae-Hun;Chun, Byung-Soo;Ahn, Dong-Hyun;Kwon, Joong-Ho;Hwang, Young-Jung;Byun, Myung-Woo;Lee, Ju-Woon
    • Food Science and Preservation
    • /
    • v.16 no.2
    • /
    • pp.286-291
    • /
    • 2009
  • Microorganisms in seafood cooking drips were counted and identified. Total viable cell counts were 6.40 and 3.10 log CFU/g in cooking drips of Hizikia fusiformis and Thunnus thynnus, respectively. However, microbial populations fell with increased irradiation doses. In H. fusiformis cooking drips, a 5-log reduction in total aerobic bacteria was obtained by irradiation with 5 kGy. In T. thynnus cooking drips, however, contaminating microorganisms were more resistant to gamma irradiation and only a 1-log reduction was seen. DNA sequence analysis showed that the principal contaminating microorganisms in H. fusiformis and T. thynnus cooking drips were Lactobacillus and Bacillus species, respectively. Therefore, the high irradiation resistance of T. thynnus cooking drips microbes may result from spore formation by Bacillus species.

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF

A Study on Microbial Contamination according to Effective Management Strategies of Indoor Climbing Gym Holds (실내 클라이밍 짐 홀드의 관리방법에 따른 미생물 오염에 관한 연구)

  • Ji-In Kim;Hyejin Shin;Yujeong Jeong;Haesong Sher;Gitaek Oh;Yonghoo Park;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.102-112
    • /
    • 2024
  • Background: Despite the rise in the number of domestic indoor climbing gyms, there is a lack of specific hygiene standards and research on the holds installed in them. Holds can act as vectors for microbial transmission through the hands, posing a risk of infectious diseases, especially with damaged skin. Objectives: The aim of this study is to investigate the contamination level and species of microorganisms on holds according to the management methods practiced in indoor climbing gyms and identify effective strategies for reducing microbial contamination. Methods: We investigated factors that may influence microbial contamination of holds, including hold management methods, user information, and hygiene management at three climbing gyms in Seoul. A total of 72 holds were sampled, 18 for each management method of brushing, high-pressure washing, and ethanol disinfection. Samples were cultured on LB and blood agar at 37℃ for 48 hours to calculate CFUs. PCR assay targeting 16S rRNA was carried out to identify microorganisms. Dunn-Bonferroni was employed to see the microbial reduction effect of the management method and the difference in microbial contamination by management method and climbing gym. Results: As a result of microbial identification, microorganisms such as Bacillus, Staphylococcus, and Micrococcus, which were derived from various environments such as skin and soil, were discovered on the surface of the climbing hold. Among the discovered microorganisms, some species had potential pathogenic properties that could cause food poisoning, gastrointestinal disease, bacteremia, and sepsis. All hold management methods were effective in reducing microorganisms (p<0.05), with ethanol disinfection being the most effective (p<0.001). Conclusions: Our results indicate that there are potential pathogens on holds that demand thorough management for microbial prevention. Proposed methods include regular brushing and ethanol disinfection in addition to high-pressure washing with long cycles, which are the existing forms of hold management. Further studies on shoe management are advised to curb soil-derived microorganisms.