• Title/Summary/Keyword: Reduction of fertilizer

Search Result 377, Processing Time 0.025 seconds

Studies on the Alleviation of Heavy Metal (Cadmium) Damage through Soil Improvement (Extraction of Cadmium and the Damage through Exchangeable Cd++ by the Application of Soil Amendments) (중금속(重金屬)(Cd)의 피해경감(被害輕減)을 위(爲)한 토양개량(土壤改良)에 관(關)한 연구(硏究) I. Cd침출(浸出)과 개량제(改良劑) 시용(施用)으로 인(因)한 치환성(置換性) Cd의 감소(減少))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.242-249
    • /
    • 1982
  • Effects of lime and ameliolating materials on decreasing available soil cadmium were studied, applying the amendments to Cd pre-and post-treated soils. Soil sttreated with Cd were placed in pots and kept under field moisture condition, summer through winter in 1981. The results of soil analysis made 40 to 60 days after the Cd treatment are as follows ; 1. Greater amount of Cd was extracted by 0.1N-HCl or 2% Citric acid than N-AcNH4 solution. More Cd was dissoluted by 0.1-HCl than 2% Citric acid. No Cd was extracted by pure water. Showing a wide variance in the amount of extractable Cd among treatments (amendments), the $N-AcNH_4$ solution seemed to be the most effective extracting solution of available soil cadmium. 2. Calcium hydroxide was the most effective materials in reducing $N-AcNH_4$ extractable Cd, followed by calcium carbonate and calcium silicate. 3. Superphosphate is also effective in reducing exchangeable cadmium. The reduction seemed to be attributed to the precipitation of cadmium phosphate. 4. The exchangeable cadmium by $N-AcNH_4$ was large in the soil pH range of 6.0 and 6.5, and it decreased as the soil pH became far apart from these values. The decrese of exchangeable Cd at low pH seemed to be related to the increase of $Mn^{+{+}}$ and that at the high pH to the precipitation as Cd-hydroxide.

  • PDF

Effects of Rice Straw and Gypsum on the Changes of Urease, Nitrate Reductase and Nitrite Reductase Activities in Saline Paddy Soil (간척답토양(干拓沓土壤)에 볏짚 및 석고시용(石膏施用)이 뇨효소(尿酵素), 초산환원효소(硝酸還元酵素) 및 아초산환원효소(亞硝酸還元酵素)의 활성(活性)에 미치는 영향(影響))

  • Lee, Sang Kyu;Kim, Young Sig;Hwang, Seon Woong;Park, Jun Kyu;Chang, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.105-110
    • /
    • 1985
  • A incubation study was conducted to find out the effects of rice straw and gypsum as soil ameriolite on urease, nitrate and nitrite reductase activities in newly reclaimed saline sandy soil. The results obtained were summarized as follows: 1. Very low urease activities were observed in saline soil if contrast to high productive paddy soil. Urease activities were lower at 5 days than that of 25 and 50 days after incubation. Remarkably high urease activities were obtained by the application of rice straw and gypsum. 2. Comparing with NPK treatment, application of rice straw and gypsum were enhanced the activities of nitrate and nitraite reductase. 3. Positive correlation (r=0.5501 p=0.05) was obtained between urease activities and ammonium nitrogen concentration in soil. 4. Cyclic oxidation and reduction of nitrate and nitrite in soil were obtained in terms of first order microbial kinetics reaction in case of application of rice straw and gypsum, respectively. 5. Positive correlation (r=0.6296 p=0.05) was obtained between the activitie of nitrite reductase and nitrate reductase in soil.

  • PDF

Effects of Different Potassium Sources on the Ammonia Volatilization from Soils under Flooded Condition (가리(加里)의 시용(施用)이 담수토양(湛水土壤)에서 암모니아의 휘산(揮散)에 미치는 영향(影響))

  • Oh, Wang-Keun;Kim, Seong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 1981
  • The effects of potassium chloride and potassium sulphate on the volatilization of ammonia from acidic clayloam and tidal sandy clay loam soils applied with urea under flooded conditions were studied in a laboratory experiment. Results obtained were as follows; 1. The application of potassium to the acidic soil promoted the volatilization of ammonia through increasing soil pH. 2. The application of potassium to urea treated on the tidal soil which lead pH over 8.0 under flooded reduced conditions decreased the wet soil pH and reduced the volatilization of ammonia from the soil. These effects of potassium were more pronounced in the potassium sulphate treatment than in the potassium chloride. 3. More ammonia was volatilized from the acidic soil applied with potassium sulphate, however, the effects of potassium fertilizers applied to the high pH tidal soil seemed to be masked by high salt content of the soil. 4. Urea brought up soil pH significantly. Potassium sulphate was more effective than potassium chloride in raising pH of the acidic soil, though the reverse could be true in the tidal soil with high pH. The reduction of sulphate might be a major cause for the pH change.

  • PDF

Effect of Sodium in Artificial substrate on the Growth, Gas Exchange and Leaf Water Status of Cucumber (Cucumis sativa L.) and Korea Melon(Cucumis melo L.) (상토에 함유된 Na함량이 오이와 참외의 생육, 광합성 및 잎의 수분상태에 미치는 영향)

  • Seo, Young-Jin;Kim, Jong-Su;Kim, Chan-Yong;Park, So-Deuk;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • Sodium is known to reduce a plant growth and yields. However, the relationships between physiological response of seedling and salinity stress caused by growing media are not well understood yet. We conducted experiments to investigate change of some parameters including Na, EC, moisture content in media under different air temperature ($15^{\circ}C$, $25^{\circ}C$), and the response of fruit-vegetables such as cucumber, oriental melon on saline conditions originated from horticultural substrate. Volumetric moisture content of media at $15^{\circ}C$ was 70%, but at $25^{\circ}C$ was decreased by 45% within 22 hrs, showing below optimal matric potential, approximately. During reaction time, the increase of Na concentration was significantly greater in saline substrate than in control. The decrease rate of Na concentration according to supplying irrigation water was higher in saline substrate than in control. $CO_2$ assimilation rate and transpiration rate of Korea melon grown in low temperature were decreased with a Na/cation ratio in hydroponic solution. Water saturation deficit was also increased significantly at $15^{\circ}C$ as compare to $25^{\circ}C$. Saline stress during nursery stage induced a reduction of seedling quality, growth and cucumber yield. The results suggest that the relationship between uncontrolled Na uptake of seedling from saline substrate and meteological condition is responsible for saline stress.

Studies on uptake of lead by crops and reduction of it's damage -III. Effect of water management and lime application on Pb uptake in paddy rice (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -III. 수도(水稻)의 납 흡수이행(吸收移行)에 대(對)한 물관리(管理) 및 석회물질(石灰物質)의 효과)

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 1986
  • A pot experiment was conducted to find out the effects of water management and application of slaked lime and wollastonite on Pb uptake of rice in a Pb added soil. The soil was adjusted to 0, 150, 300 and 600 ppm of Pb concentration. The slake lime was applied at the equivalent amount of lime requirement with 150kg/10a adding and the wollastonite, 200kg/10a, respectively. The results obtained were as follows. 1. The lead contents in leaf stem and brown rice increased with increasing the soil Pb content and the ratio of Pb/(Ca+Mg) equivalent in soil but they showed no influence on yields. 2. The application of lime and wollastonite reduced Pb content in plant. 3. The lead content in plant was higher in intermittently irrigated treatment than in submersed irrigation. 4. The soil pH was increased in the order of lime, wollastonite and control. 5. $1N-NH_4$ OAC soluble Pb content in soil was higher in the submersed irrigation than in the intermittently irrigated and was higher in wollastonite application treatment than the slaked lime after harvesting.

  • PDF

Effect of Soil Salinity and Culturing Condition on the Maintenance of Ridge and the Growth of Upland Crops in the Saemangeum Reclaimed Tidal Land (새만금간척지에서 토양염농도 및 재배조건이 이랑의 유지와 밭작물의 생육에 미치는 영향)

  • Sohn, Yong-Man;Song, Jae-Do;Jeon, Geon-Yeong;Kim, Doo-Hwan;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.529-539
    • /
    • 2010
  • In order to evaluate the effect of soil salinity and culturing conditions including compost application and vinyl mulching on the maintenance of ridge and the growth of upland crops, three crops such as corn, soybean and sweet potato were experimented by using three or four cultivars of crops in the Saemangeum reclaimed tidal land. Average soil salinity before seeding was 2 dS $m^{-1}$, which was low enough for general upland crops to grow. However, high soil EC more than 16 dS $m^{-1}$ was observed in some parts of the experimented field. In the experiment, it was concluded that growth retardation and yield reduction of summer upland crops might be from severe erosion of ridge, soil compaction, flooding or wet soil condition and high salinity of some parts, and then these deteriorations were possibly improved for good crop growth and yield increase by compost application and vinyl mulching cultivation in the Saemangeum reclaimed tidal land.

Effects of Silica and Compost Application on the Availability of Accumulated Phosphate in Paddy and Upland Soils (축적인산(蓄積燐酸) 유효화(有效化)에 미치는 규산(珪酸)과 퇴비(堆肥)의 시용효과)

  • Lee, Chun-Hee;Cheon, Seong-Gun;Shin, Won-Kyo;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 1990
  • Field experiments were conducted to avail the accumulated phosphorus by silica 200kg/10a and compost 2,000kg/10a instead of phosphate fertilization in 1988 to 1989. Cultivated varieties were Dongjinbyeo in paddy soils of Av. $P_2O_5$ 233ppm, and Baegunkong in upland soils of Av. $P_2O_5$ 530ppm. The results were as follows. 1. Available phosphorus in the soil was increased about 60ppm in silica and compost application compared with control. Its increment rate by silica and compost application was higher in paddy soils than in upland soils. 2. Absorbed phosphorus by plant was increased in silica and compost application compared with control, whose difference was higher in soybean plant than in rice plant. 3. Amount of absorbed phosphorus in plant was negative in relation to soil DTPA-Fe, but was positive in relation to soil reduction and root nodule of soybean. 4. Persistence rate of phosphorus was about 80 percent in compost application and 100 percent in phosphate fertilization compared with control, and it was apt to decrease by silica. 5. The yield of rice was no difference between with and without phosphate fertilization, but the yield of soybean was increased 5 percent in none application compared with phosphate fertilization.

  • PDF

Growth Response and Changes of Nitrate and Sucrose Content in Tomato under Salt Stress Condition (염스트레스에 의한 토마토 생장반응과 식물체내 Nitrate 및 Sucrose 변화)

  • Lee, Ju-Young;Jang, Byoung-Choon;Lee, Su-Yeon;Park, Jae-Hong;Choi, Geun-Hyoung;Kim, Sam-Cwaun;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.164-169
    • /
    • 2008
  • This experiment was carried out to find the growth response and changes of nitrate and soluble sugar content in tomato leaves with salt stress. Tomato (Solanum lycopericum) seedlings were grown under different electrical conductivity (EC) levels adjusted with $CaCl_2$ as 1, 2, and $6dS\;m^{-1}$. The growth response and contents of nitrate and soluble sugar in tomato plants were examined at 7 and 14 days after salt treatment. Leaf area and dry weight ratio of shoot to root of tomato plants were decreased as EC level increased. Photosynthetic rate of leaves was reduced under high EC level due to the stomatal closure and the reduction of transpiration rate. The soluble sugar and starch content were lower in the tomato leaves grown under high EC level. Total nitrogen and nitrate contents were decreased in high EC level, whereas the ammonium content was increased. High-salt stress induced the accumulation of salt crystal in mesophyll cells of tomato leaf.

Effect of Rice Straw and Woodchip Application on Greenhouse Soil Properties and Vegetable Crops Productivity (볏짚과 파쇄목 시용이 시설하우스 토양 성질과 작물 수량에 미치는 영향)

  • Seo, Young-Ho;Lim, Soo-Jeong;Kim, Seung-Kyeong;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.4-11
    • /
    • 2007
  • There have been increasing concerns about decreasing crop productivity due to salt accumulation in greenhouse soils. The objective of the study was to investigate the impact of rice straw and woodchip application to a salt accumulated greenhouse soil on crop productivity and soil quality. The application of rice straw (RS) and woodchip (W) increased tomato yield and decreased blossom-end rot, and increased yield of Chinese cabbage compared with standard recommended fertilization ($204-103-122kg\;ha^{-1}\;N-P_2O_5-K_2O$ for tomato and $222-64-110kg\;ha^{-1}\;N-P_2O_5-K_2O$ for Chinese cabbage), while less soil residual nitrate, phosphatephosphorus, and potassium. In addition to the organic material application, fertilization reduction based on soil testing may also contribute to relatively low level of soil residual nutrients. Application of the organic material reduced soil bulk density presumably because of improved soil aggregation and structure, and increased biomass C and dehydrogenase activity. In comparison to rice straw, woodchip application resulted in higher crop yield, less amount of soil residual nitrate and lower soil EC, and greater biomass and dehydrogenase activity. The results obtained in this study indicateshowed that woodchip amendment along with reduced fertilization based on soil testing can be one of essential management practices for salt accumulated greenhouse soils.

Reducing Ammonia Emissions and Enhancing Plant Growth through Co-application of Microbes and Methanol in Sewage Sludge Treatment (하수슬러지 처리에서 미생물과 메탄올 적용을 통한 암모니아 배출 감소 및 식물 성장 향상 연구)

  • Jin-Won Kim;Hee-Gun Yang;Hee-Jong Yang;Myeong-Seon Ryu;Gwang-Su Ha;Su-Ji Jeong;Soo-Young Lee;Ji-Won Seo;Do-Youn Jeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Sewage sludge has been widely used as an organic fertilizer in agriculture. However, sewage sludge can cause serious malodor problems resulting from the decomposition of organic compounds in anaerobic conditions. The malodor of sewage sludge mainly occurs due to a low carbon to nitrogen ratio (C/N), high moisture, and low temperature, which are ideal conditions for ammonia emissions. Therefore, in this study, we investigated the reduction of the odor-causing ammonia nitrogen (NH3-N) in sewage sludge by co-application of microbes and methanol (MeOH). The physico-chemical properties of the municipal sewage sludge showed that the odor was mainly caused by a higher NH3-N content (2932.2 mg L-1). Supplementation with MeOH (20%) as a carbon source in the sewage sludge significantly reduced the NH3-N up to 34.2% by increasing C/N ratio. Furthermore, the sewage sludge was treated with the NH3-N reducing and plant growth promoting (PGP) bacteria Stenotrophomonas rhizophila SRCM 116907. The treatment with S. rhizophila SRCM 116907 significantly increased the seedling vigor index of Lolium perenne (10.3%) and Chrysanthemum burbankii (42.4%). The findings demonstrate that supplementing sewage sludge with methanol significantly reduces ammonia emissions, thereby mitigating malodor problems. Overall, the study highlights the potential of using a microbial and methanol approach to improve the quality of sewage sludge as an organic fertilizer and promote sustainable agriculture.