• Title/Summary/Keyword: Reduction of fertilizer

Search Result 378, Processing Time 0.023 seconds

Effect of Co-inoculation of Two Bacteria on Phosphate Solubilization

  • Lee, Yu-Jin;Lee, Heon-Hwak;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.318-326
    • /
    • 2016
  • Two phosphate solubilizing bacteria, Pantoea rodasii PSB-11and Enterobacter aerogenes PSB-12, were isolated from button mushroom compost and employed to assess their synergistic effect in liquid medium and on growth of green gram plants by single and co-inoculation of the strains. Co-inoculation of two strains was found to release the highest content of soluble phosphorus ($521{\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of Pantoea strain ($485{\mu}g\;ml^{-1}$) and Enterobacter strain ($470{\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of bacterial strain and co-inoculation of two bacterial strains in terms of phosphorous release. The highest pH reduction, organic acid production and glucose consumption was observed in the E. aerogenes PSB-12 single inoculated culture medium rather than those of co-inoculation. According to the plant growth promotion bioassay, co-inoculated mung bean seedlings recorded 10.6% and 10.7% higher shoot and root growth respectively compared to the control. Therefore, in concluding, co-inoculation of the strains P. rodasii and E. aerogenes displayed better performance in stimulating plant growth than inoculation of each strain alone. However, being short assessment period of the present study, we recommend in engaging further works under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Suppression of Pyrite Oxidation by Formation of Iron Hydroxide and Fe(III)-silicate Complex under Highly Oxidizing Condition

  • Lee, Jin-Soo;Chon, Chul-Min;Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.297-302
    • /
    • 2011
  • Acid drainage generated by pyrite oxidation has caused the acidification of soil and surface water, the heavy metal contamination and the corrosion of structures in abandoned mine and construction sites. The applicability of Na-acetate (Na-OAc) buffer and/or Na-silicate solution was tested for suppressing pyrite oxidation by reacting pyrite containing rock and treating solution and by analyzing solution chemistry after the reaction. A finely ground Mesozoic andesite containing 10.99% of pyrite and four types of reacting solutions were used in the applicability test: 1) $H_2O_2$, 2) $H_2O_2$ and Na-silicate, 3) $H_2O_2$ and 0.01M Na-OAc buffer at pH 6.0, and 4) $H_2O_2$, Na-silicate and 0.01M Na-OAc buffer at pH 6.0. The pH in the solution after the reaction with the andesite sample and the solutions was decreased with increasing the initial $H_2O_2$ concentration but the concentrations of Fe and $SO_4^{2-}$ were increased 10 - 20 times. However, the pH of the solution after the reaction increased and the concentrations of Fe and $SO_4^{2-}$ decreased in the presence of Na-acetate buffer and with increasing Na-silicate concentration at the same $H_2O_2$ concentration. The solution chemistry indicates that Na-OAc buffer and Na-silicate suppress the oxidation of pyrite due to the formation of Fe-hydroxide and Fe-silicate complex and their coating on the pyrite surface. The effect of Na-OAc buffer and Na-silicate on reduction of pyrite oxidation was also confirmed with the surface examination of pyrite using scanning electron microscopy (SEM). The result of this study implies that the treatment of pyrite containing material with the Na-OAc buffer and Na-silicate solution reduces the generation of acid drainage.

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Effects of Vermicompost Application on the Growth and Ginsenoside Content of Panax ginseng in a Reclaimed Field

  • Eo, Jinu;Park, Kee-Choon;Lim, Jin-Soo;Kim, Myung-Hyun;Choi, Soon-Kun;Na, Young-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.138-143
    • /
    • 2016
  • The objective of this study was to evaluate the effects of the application of vermicomposts on the growth parameters and ginsenoside content of ginseng roots. Food waste vermicompost (FW), cow manure vermicompost (CM), and paper sludge vermicompost (PS) were applied at 10 and $40t\;ha^{-1}$, respectively. One-year-old seedlings were transplanted and 4-year-old roots were harvested. Soil nitrate and phosphate concentrations were increased in the plots applied with FW and CM at $40t\;ha^{-1}$. Soil pH and exchangeable Ca concentrations were higher at FW $40t\;ha^{-1}$ than at CM $40t\;ha^{-1}$. Root yield increased when treated with FW $40t\;ha^{-1}$ in comparison to the yield for the control. The incidences of root rot disease and ginsenoside content were not significantly affected by the treatments. The results suggested that application of vermicompost might not show a relationship between root biomass and ginsenoside content. It further showed that proper use of vermicompost can promote root yield without a reduction in root quality or an increase in the incidence of root rot disease in reclaimed fields.

Efficacy of Cyanobacterial Biofertilizer (CBB) on Leaf Yield and Quality of Mulberry and its Impact on Silkworm Cocoon Characters

  • Dasappa D.M. Ram Rao;Ramaswamy S.N.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • An experiment was conducted to study the efficiency of cyanobacterial biofertilizer (CBB) with chemical (NPK) fertilizer on quantitative and qualitative characters of mulberry variety Kanva-2. Their influences on silkworm growth and cocoon characters were also studied. Ten different CBB and NPK fertilizer treatments were given to 5000 plants of established mulberry garden. Treatments were of four types viz., (i) T1 to T7: single and combination dose of CBB+50% NPK (ii) T8: combination dose of CBB + 25%NPK, (iii) T9: CBB only and (iv) T10: control-l00% NPK. Soil pH decreased and nutrients status increased in CBB (T1- T9) treated plots. Average of ten crops data on quantitative traits revealed that T7 (CBB [N. muscorum (1.0 g), A. variahilis (1.0) and S. millei (1.0 g)] + 50% NPK) was very effective in improving growth parameters. Leaf yield was also found high in treatment T7 (32.12 tons/ha/yr.) followed by T10 (31.17 tons/ha/yr.) and T8 (27.67 tons/ha/yr.). Leaf quality characters were found high in T7 and low in T9. Most of the quality traits in T7 are on par with control no. The results revealed that reduction in the dose of chemical fertilizers in T7 did not affect the leaf yield and leaf quality traits of mulberry. This clearly indicates that the efficiency of CBB (T7) provides nitrogen, increases essential nutrients available in soil, maintain soil pH and supply growth substances required for the improvement of leaf yield and leaf quality of mulberry. Bioassay study also revealed no significant difference in silkworm growth and cocoon characters between treatments T7 and T10. Economics calculated revealed that T7 is highly economical and beneficial over T10 by gaining an amount of Rs. 660/-/acre/crop. Thus, treatment T7 containing N. muscorum (1.0 g), A. variahilis (1.0 g) and S. millei (1.0 g) + 50% NPK fertilizers can be recommended to sericulturists mainly to reduce the use of NPK fertilizers, by saving 50% of its cost and to improve soil fertility conditions, which in turn improves leaf yield and quality of mulberry.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Concentration Dependent Effect of Heavy Metals on Soil Carbon Mineralization

  • Walpola, Buddhi Charana;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.551-554
    • /
    • 2012
  • The present laboratory investigation was conducted to assess the effect of heavy metals on carbon mineralization. Soil was treated with three concentrations (50, 100 and $150{\mu}mol\;g^{-1}$ soil) of two heavy metals (Cd and Zn) in a factorial combination of treatments replicated four times. Determination of carbon mineralization was carried out at 3, 7, 14, 21, 28, 42 and 56 days after metal treatments.. The amount of $CO_2$-C released from heavy metal treated soils was found to be decreased at an increasing rate during the first 28 days, followed by slow release as incubation progressed. The total amounts of $CO_2$-C released were 448, 382 and $348mg\;kg^{-1}$ soil respectively for soils treated with 50, 100 and $150{\mu}mol\;g^{-1}$ soil of Zn. The corresponding figures for Cd treated soils were 406, 354 and $282mg\;kg^{-1}$ soil implying that dose-dependent reduction in cumulative $CO_2$-C released from soils. The inhibition of carbon mineralization was found to be high in Cd treated soils than that of Zn treated. Therefore, tolerance and adaptation of the microbial community is likely to be related to the concentration and the type of metal. According to the results, carbon mineralization can be considered as possible indicator of soil pollution by means of heavy metals.

Synergistic Phosphate Solubilization by Burkholderia anthina and Aspergillus awamori

  • Walpola, Buddhi Charana;Jang, Hyo-Ju;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Single or co-inoculation of phosphate solubilizing bacterial and fungal strains (Burkholderia anthina and Aspergillus awamori respectively) was performed separately to assess their synergistic and antagonistic interactions and the potential to be used as bio-inoculants. Co-inoculation was found to release the highest content of soluble phosphorus (1253 ${\mu}g\;ml^{-1}$) into the medium, followed by single inoculation of fungal strain (1214 ${\mu}g\;ml^{-1}$) and bacterial strain (997 ${\mu}g\;ml^{-1}$). However, there was no significant difference between single inoculation of fungal strain and co-inoculation of fungal and bacterial strain in terms of the phosphorous release. The highest pH reduction, organic acid production and glucose consumption were observed in the sole A. awamori inoculated culture medium. According to the plant growth promotion bioassays, co-inoculation of the microbial strains resulted in 21% and 43% higher shoot and root growth of the mung bean seedlings respectively as compared to the respective controls. Therefore, co-inoculation of B. anthina and A. awamori showed better performance in stimulating plant growth than that in inoculation of each strain alone. However, assessment period of the present study being short, we recommend in engaging further experimentation under field conditions in order to test the suitability of the strains to be used as bio-inoculants.

Influence of Different pH Conditions and Phosphate Sources on Phosphate Solubilization by Pantoea agglomerans DSM3493

  • Walpola, Buddhi Charana;Keum, Mi-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.998-1003
    • /
    • 2012
  • Pantoea agglomerans DSM3493 was isolated from green house soils collected from Chungchugnam-do province, Gongju-Gun area in South Korea and phosphate solubilization and organic acid production of the strain were assessed using three types of insoluble phosphate sources (Ca phosphate, Fe phosphate and Al phosphate) under three different pH conditions (7, 8 and 9). The highest Ca phosphate solubilization ($651{\mu}g\;mL^{-1}$) was recorded at pH 7 followed by pH 8 and 9 (428 and $424{\mu}g\;mL^{-1}$ respectively). The solubilization rate was found to be 80.4, 98.1 and $88.7{\mu}g\;mL^{-1}$ (for Fe phosphate containing medium) and 9.3, 12.1 and $29.8{\mu}g\;mL^{-1}$ (for the Al phosphate containing medium) respectively at pH 7, 8 and 9. Though increasing pH of the medium caused reduction in the rate of solubilization of Ca phosphate, solubilization of Fe and Al phosphates enhanced with increasing pH. By contrast, the highest amount of organic acid was produced with Ca phosphate while the lowest was recorded with the presence of Al phosphate. Among the organic acids, gluconic acid production was found to be the highest, followed by oxalic acid and citric acid regardless the source of phosphate. Results can thus be concluded that the production of organic acids appears to play a significant role in the inorganic phosphate solubilization.

Role of Chemical Fertilizer and Change of Agriculture in Korea (우리나라 농업의 변천과 비료의 역할)

  • Chung, Doug-Y.;Lee, Kyo-S.
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.69-83
    • /
    • 2008
  • The self-supply rate of Korea in 2006 was approximately 27.3 % by importing 13.99Mt for 19.79Mt of demanded amount. Among the imported crops, wheat, corn, and soybean consumed 95 % for the total imported amount, and wheat, corn, and soybean were 3.5Mt(Table use : 0.22Mt; Feed stuff : 0.13Mt), 8.7Mt(Table use : 0.19Mt; Feed stuff : 0.68Mt), and 1.2Mt (Table use : 0.03Mt; Feed stuff : 0.09Mt), respectively. On the other hand, our government has prepared the strategies for a great fear of food according to sharp price rise of the international crops by maintaining the self-supply rate of 5 % excluding 5.23Mt of rice in Korea. Also concern for recycled energy known as future energy for era of high oil price and global warming due to green house gas is rapidly growing. Therefore, our country which has relied on import of the whole oil needed in Korea and has to keep Kyoto Agent to request reduction of green house gas fully support research and practical use for agricultural products as resource of alternate energy. At first, we have to develop the mass production technology in order to secure a program of self-supply of food for bioenergy production utilizing agricultural product in Korea. But we assume that this matter is difficult to achieve under the current agriculture system that more emphasizes the environment conservation such as environmentally-friendly agriculture than production of food.

  • PDF