• Title/Summary/Keyword: Reduction device

Search Result 1,286, Processing Time 0.03 seconds

Method for Message Processing According to Priority in MQTT Broker (MQTT Broker에서 우선순위에 따른 메시지 처리를 위한 방법에 관한 연구)

  • Kim, Sung-jin;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1320-1326
    • /
    • 2017
  • Recently, IoT has been studying a lightweight protocol to satisfy device communication in a limited network environment. MQTT is a typical lightweight protocol. It supports small fixed headers to minimize overhead, and adopts publish/subscribe structure to guarantee real-time performance. However, MQTT does not support prioritization of important data and can not provide QoS in a specific IoT service. In this paper, we propose a message processing method to consider the priority of various IoT services in MQTT. In the proposed method, the priority flag is added to the fixed header of the MQTT in the node to transmit the message, and the broker confirms the priority of the corresponding message and processes it preferentially. Through experiment and evaluation, we confirmed the reduction of end-to-end delay between nodes according to priority.

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • 김민회;백원식;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F740 DSP. Although SRM possess several advantages including simple structure and high efficiency, but the control thrive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo dave system of SRM. So, the position control system of 1 Hp SRM is developed and evacuated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

Three-Dimensional Modeling and Simulation of a Phosphoric Acid Fuel Cell Stack (인산형 연료전지 스택에 대한 3차원 모델링 및 모사)

  • An Hyun-shik;Kim Hyo
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.40-48
    • /
    • 2000
  • A fuel cell is an electrochemical device continuously converting the chemical energy in a fuel and an oxidant to electrical energy by going through an essentially invariant electrode-electrolyte system. Phosphoric acid fuel cell employs concentrated phosphoric acid as an electrolyte. The cell stack in the fuel cell, which is the most important part of the fuel cell system, is made up of anode where oxidation of the fuel occurs cathode where reduction of the oxidant occurs; and electrolyte, to separate the anode and cathode and to conduct the ions between them. Fuel cell performance is associated with many parameters such as operating and design parameters associated with the system configuration. In order to understand the design concepts of the phosphoric fuel cell and predict it's performance, we have here introduced the simulation of the fuel-cell stack which is core component and modeled in a 3-dimensional grid space. The concentration of reactants and products, and the temperature distributions according to the flow rates of an oxidant are computed by the help of a computational fluid dynamic code, i.e., FLUENT.

  • PDF

Development of Electrical Safety Evaluation Method about PEMFC 1kW (가정용연료전지 전기적 안전성 평가 기법 개발)

  • Han, Woonki;Park, Chaneum;Jung, Jinsu;Ko, Woonsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.99-99
    • /
    • 2011
  • Fuel cell systems are a completely different form of electricity source that has been used so far and is an aggregation of multiple technologies with multidisciplinary features that can be operated safely only when gas and electrical safety are being considered. Since fuel cells generate through electrochemical reactions there are difficulties in ensuring electricity safety, power quality assessment, effective control and reliability standards for system faults using conventional inspection techniques and even though they are necessary as a primary means for reduction of CO2 owing to the Climate Convention, electrical safety assessment and measures are required for the prevention of faults in residential facilities. Although small-scaled distributed power supplies can be utilized as important means of peak control and energy management measures, research is required for observing the effects on the system and the development of inspection technology to ensure stable operation, and the electrical safety of residential fuel cell systems need to be assessed and the problems derived for establishing electrical safety standards. From the year 2002, Japan has established laws on technical safety standards and development and rules on the product specifications and standards for the industrialization of hydrogen fuel cells. Also, a lot of effort have been made for the commercialization of fuel cells by building one-stop certification services. Internationally, the IEC TC 105 has established international standards based on fuel cells. In order to protect the national interest, the country should be able to respond accordingly meet global standards. In fact, in Korea, to comply with the international trend, Korea Energy Management Corporation is establishing a certified agenda for fuel cells and Korean Agency for Technology and Standards is enacting technical standards for fuel cells. The current terms of fuel cells are that research has been focused more on the quality and performance of manufactured products rather than stable power operation and maintenance over time. In this paper, by considering the household fuel cell as a power device, the safety standards of the fuel cell system for a reliable operation with the existing power system is being proposed.

  • PDF

Palm-Size-Integrated Microwave Power Module at 1.35-GHz for an Atmospheric Pressure Plasma for biomedical applications

  • Myung, C.W.;Kwon, H.C.;Kim, H.Y.;Won, I.H.;Kang, S.K.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.498-498
    • /
    • 2013
  • Atmospheric Pressure Plasmas have pioneered a new field of plasma for biomedical application bridging plasma physics and biology. Biological and medical applications of plasmas have attracted considerable attention due to promising applications in medicine such as electro-surgery, dentistry, skin care and sterilization of heat-sensitive medical instruments [1]. Traditional approaches using electronic devices have limits in heating, high voltage shock, and high current shock for patients. It is a great demand for plasma medical industrial acceptance that the plasma generation device should be compact, inexpensive, and safe for patients. Microwave-excited micro-plasma has the highest feasibility compared with other types of plasma sources since it has the advantages of low power, low voltage, safety from high-voltage shock, electromagnetic compatibility, and long lifetime due to the low energy of striking ions [2]. Recent experiment [2] shows three-log reduction within 180-s treatment of S. mutans with a low-power palm-size microwave power module for biomedical application. Experiments using microwave plasma are discussed. This low-power palm-size microwave power module board includes a power amplifier (PA) chip, a phase locked loop (PLL) chip, and an impedance matching network. As it has been a success, more compact-size module is needed for the portability of microwave devices and for the various medical applications of microwave plasma source. For the plasma generator, a 1.35-GHz coaxial transmission line resonator (CTLR) [3] is used. The way of reducing the size and enhancing the performances of the module is examined.

  • PDF

Clinical Efficacy of Manual Liquid-Based Cervicovaginal Cytology Preparation: Comparative Study with Conventional Papanicolaou Test (수기 액상세포검사를 이용한 자궁목 세포진 검사의 임상적 효용성: 고식적 세포진 검사와의 비교)

  • Park, Jong-Myoung;Lee, Jong-Gi;Suh, In-Soo
    • The Korean Journal of Cytopathology
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2005
  • This study was performed to compare manual liquid-based preparation with conventional Papanicolaou tests in view of the cytologic diagnoses and specimen adequacy. The specimens of 5,979 women from 33 local clinics and 1 general hospital were prepared by both manual liquid-based preparation and conventional Papanicolaou test. The cytologic diagnoses and specimen adequacy were evaluated in Department of Fathology in Kyoungpook National University School of Medicine. A conventional Papanicolaou test was always prepared first, after that residual material on the sampling device was rinsed into a liquid preservative, and then thin-layer slides were prepared using manual method of liquid-based cervicovaginal cytology. Conventional and liquid-based slides were read independently, and cytologic diagnoses and specimen adequacy were classified using the Bethesda System. Of the cases, 5,763 (96.3%,) had the same interpretation, and there was no significant diagnostic difference in 5,853 (97.8%) cases. When evaluating cases with more than one diagnostic class difference, the manual liquid-based preparation demonstrated a statistically significant overall improvement (2.1%) in the detection of squamous intraepithelial lesion and invasive cancer. Using manual method of liquid-based preparation, there was 14.1%, reduction in unsatisfactory slides through excellent cellular presentation. In conclusion, the manual liquid-based preparation produces standardized quality, superior sensitivity and improved adequacy as compared to the conventional method.

An Experimental Study on Flammability Limits and Combustion Characteristics of Synthetic Gas in a Constant Combustion Chamber (정적연소기를 이용한 합성가스의 가연한계 및 연소특성에 관한 실험적 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • Synthetic gas is defined as reformed gas from hydrocarbon-based fuel and the major chemical species of the synthetic gas are $H_2$, CO and $N_2$. Among them, hydrogen from synthetic gas is very useful species in chemical process such as combustion. It is a main reason that many studies have been performed to develop an effective reforming device. Furthermore, other technologies have been studied for synthetic gas application, such as the ESGI(Exhaust Synthetic Gas Injection) technology. ESGI injects and burns synthetic gas in the exhaust pipe so that heat from hydrogen combustion helps fast warmup of the close-coupled catalyst and reduction of harmful emissions. However, it is very hard to understand combustion characteristic of hydrogen under low oxygen environment and complicated variation in chemical species in exhaust gas. This study focuses on the characteristics of hydrogen combustion under ESGI operating conditions using a CVC(Constant Volume Chamber). Measurements of pressure variation and flame speed have been performed for various oxygen and hydrogen concentrations. Results have been analyzed to understand ignition and combustion characteristics of hydrogen under lower oxygen conditions. The CVC experiments showed that under lower oxygen concentration, amount of active chemicals in the combustion chamber was a crucial factor to influence hydrogen combustion as well as hydrogen/oxygen ratio. It is also found that increase in volume fraction of oxygen is effective for the fast and stable burning of hydrogen by virtue of increase in flame speed.

Mitigation of Ammonia Dispersion with Mesh Barrier under Various Atmospheric Stability Conditions

  • Gerdroodbary, M. Barzegar;Mokhtari, Mojtaba;Bishehsari, Shervin;Fallah, Keivan
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.125-136
    • /
    • 2016
  • In this study, the effects of the mesh barrier on the free dispersion of ammonia were numerically investigated under different atmospheric conditions. This study presents the detail and flow feature of the dispersion of ammonia through the mesh barrier on various free stream conditions to decline and limit the toxic danger of the ammonia. It is assumed that the dispersion of the ammonia occurred through the leakage in the pipeline. Parametric studies were conducted on the performance of the mesh barrier by using the Reynolds-averaged Navier-Stokes equations with realizable k-${\varepsilon}$ turbulence model. Numerical simulations of ammonia dispersion in the presence of mesh barrier revealed significant results in a fully turbulent free stream condition. The results clearly show that the flow behavior was found to be a direct result of mesh size and ammonia dispersion is highly influenced by these changes in flow patterns in downstream. In fact, the flow regime becomes laminar as flow passes through mesh barrier. According to the results, the mesh barrier decreased the maximum concentration of the ammonia gas and limited the risk zone (more than 500 ppm) lower than 2 m height. Furthermore, a significant reduction occurs in the slope of the upper boundary of $NH_3$ risk zone distribution at downstream when a mesh barrier is presented. Thus, this device highly restricts the leak distribution of ammonia in the industrial plan.

Axial magnetic gear with a closed magnetic path (자기 폐회로를 갖는 축형 마그네틱 기어)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.726-733
    • /
    • 2017
  • A magnetic shutter gear is a device that transfers mechanical power by synchronizing the magnetic field between permanent magnet layers facing circumferentially through a harmonic modulator. However, magnetic gears uses many rare-earth permanent magnets to guarantee comparable torque density to that of mechanical reducer. Hence, we propose a novel axial magnetic gear with a dramatically reduced number of permanent magnets and a closed magnetic path. The torque of the system was compared to that of an existing shutter gear through a harmonic analysis of the air-gap magnetic field. The modulator thickness and open ratio were considered as the primary design parameters, and the cogging effect was analyzed for variation of the reduction ratio. A dynamic model between the high-speed side and low-speed side was derived, and position control was performed for a constructed hardware implementation.

The Effect of Foot Cooling on Body Temperature (발바닥 부위 쿨링이 심부 체온에 미치는 효과)

  • Park, Yujin;Kim, Junghun;Park, Jieun;Kim, Jiin;Lee, Jongmin
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.232-236
    • /
    • 2017
  • In this study, We investigated the effect of foot cooling on the reduction of body temperature after hard exercise at the high temperature of $40^{\circ}C$. We performed a total of 30 subjects, and the subjects performed treadmill exercise for 30 minutes. We produced the cooling device to cool the foot using Peltier module. After the end of the exercise, We performed normal recovery method and cooling recovery method(one foot, both feet) for 1 hour on the same indoor environmental conditions and confirmed the change of body temperature of subjects. The results of deep body temperature measurement showed average $38.78{\pm}0.22^{\circ}C$ to $38.54{\pm}0.15^{\circ}C$ when the normal recovery method was performed. Cooling recovery method on one foot showed average $38.69{\pm}0.14^{\circ}C$ to average $38.06{\pm}0.17^{\circ}C$ and Cooling recovery method on both feet showed average $38.69{\pm}0.15^{\circ}C$ to average $37.84{\pm}0.21^{\circ}C$. There was a significant difference between the normal recovery method and the one foot cooling recovery method(p < .05), there was a significant difference between the normal recovery method and the both feet cooling recovery method(p < .05) and there was a significant difference between the one foot cooling recovery method and the both feet cooling recovery method(p < .05). Body temperature showed the lowest decrease rate when the normal recovery method was performed, and body temperature showed the highest decrease rate when the both feet cooling recovery method was performed. Therefore, recovery of cooling on the foot after hard exercise have decreased body temperature, delay fatigue in the body, and will be contributed to improvement of athlete performance.