• Title/Summary/Keyword: Reduction behavior

Search Result 2,188, Processing Time 0.04 seconds

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.

Behavior of lightweight aggregate concrete voided slabs

  • Adel A. Al-Azzawi;Ali O, AL-Khaleel
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Reducing the self-weight of reinforced concrete structures problem is discussed in this paper by using two types of self-weight reduction, the first is by using lightweight coarse aggregate (crushed brick) and the second is by using styropor block. Experimental and Numerical studies are conducted on (LWAC) lightweight aggregate reinforced concrete slabs, having styropor blocks with various sizes of blocks and the ratio of shear span to the effective depth (a/d). The experimental part included testing eleven lightweight concrete one-way simply supported slabs, comprising three as reference slabs (solid slabs) and eight as styropor block slabs (SBS) with a total reduction in cross-sectional area of (43.3% and 49.7%) were considered. The holes were formed by placing styropor at the ineffective concrete zones in resisting the tensile stresses. The length, width, and thickness of specimen dimensions were 1.1 m, 0.6 m, and 0.12 m respectively, except one specimen had a depth of 85 mm (which has a cross-sectional area equal to styropor block slab with a weight reduction of 49.7%). Two shear spans to effective depth ratios (a/d) of (3.125) for load case (A) and (a/d) of (2) for load case (B), (two-line monotonic loads) are considered. The test results showed under loading cases A and B (using minimum shear reinforcement and the reduction in cross-sectional area of styropor block slab by 29.1%) caused an increase in strength capacity by 60.4% and 54.6 % compared to the lightweight reference slab. Also, the best percentage of reduction in cross-sectional area is found to be 49.7%. Numerically, the computer program named (ANSYS) was used to study the behavior of these reinforced concrete slabs by using the finite element method. The results show acceptable agreement with the experimental test results. The average difference between experimental and numerical results is found to be (11.06%) in ultimate strength and (5.33%) in ultimate deflection.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

An Analytical Study on the Structural Behavior of SC walls with Opening (개구부를 갖는 SC 벽체의 거동에 관한 해석적 연구)

  • Lee, Seung Joon;Choi, Byong Jeong;Kang, Shin Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.233-243
    • /
    • 2009
  • The objective of this study was to investigate the effect of openings on the structural behavior of SC walls. The FEM program ABAQUS was used in this analytical study. The main parameters were the locations and sizes of the openings: a total of 20 locations and a total of four opening sizes were adopted. The analysis results were compared with the results of the currently applied evaluation methods. The strength reduction factor method may be used to safely design SC walls with openings. The strength reduction factor of the effective strut method is more similar to that of the analysis results.

An Experimental Study on Void Closure Behavior with respect to Reductions in Height (압하율에 따른 기공압착 거동에 관한 실험적 연구)

  • Choi, I.J.;Choi, H.J.;Park, H.J.;Choi, S.;Jung, T.W.;Park, D.K.;Choi, S.K.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.114-117
    • /
    • 2009
  • In this work, closing behavior of the voids generated in a casting process was investigated for various parameters such as reductions in height void size and billet rotation during hot open die forging process. The reduction in height and path schedule including the number of paths and billet rotation were chosen as key process variables to express the change of geometrical void shape and void closing behavior. On the other hand, values of die overlapping and die width ratio were set to be constant. Extend of void closure was observed and evaluated using tensile test and microscope. Based on the experimental result, it is ensured that void closure do not occur at 15% and 30% reduction in height as well as one or two rotations of a billet. The useful datum obtained from this study could be utilized to establish an optimum path schedule in the open die forging process.

  • PDF

Decomposition Behavior of Ferro-Si3N4 for High Temperature Refractory Application (고온 내화물 응용을 위한 질화규소철 (Ferro-Si3N4)의 분해거동)

  • Choi, Do-Mun;Lee, Jin-Seok;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.582-587
    • /
    • 2006
  • Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.

The Effects of Fast food Customers' Perceived Risk on Purchasing Intention, Attitude, & Risk Reduction Behavior (패스트푸드 이용 고객의 위험지각요인이 위험감소행동, 태도, 및 구매의도에 미치는 영향)

  • Chong, Yu-Kyeong;Sung, Yu-Kyeong;Ryu, In-Young
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.5
    • /
    • pp.518-524
    • /
    • 2009
  • This study was conducted to investigate the effects of fast food customer's perceived risks on risk reduction behavior, attitude and purchase intention. A total of 268 usable surveys were collected using a stratified random sampling method. Descriptive analysis and factor analysis was then conducted using SPSS 12.0, and a Cronbach's $\alpha$ was generated to estimate the internal consistency of the survey items. Multiple regression analysis was used to evaluate the relationships among variables. The results indicated that fast food safety and monetary risks had a negative effect on customer feelings and satisfaction with fast food, which had a positive effect on buying purpose and recommendation purpose. Conversely, obesity and monetary risks only had a negative effect on buying purpose. An improved menu more effectively reduced the risk perceived by the fast-food customers than an improved image.

Polarographic Behavior of Azo Series Organic Compounds (III). Reduction of Benzeneazoresorcinol in Acetonitrile (Azo계 유기화합물의 폴라로그래프법적 거동 (제3보). 아세토니트릴중에서 Benzeneazoresorcinol의 환원)

  • Heung Lark Lee;Zun Ung Bae
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.130-134
    • /
    • 1984
  • The polarographic behavior of benzeneazoresorcinol (BAR) in acetonitrile as an aprotic solvent has been investigated by direct current polarography and controlled-potential coulometry. The reduction of BAR in $1.0{\times}10^{-2}$M tetraethylammonium perchrolate solution proceeds along four one-electron steps to give the corresponding amine compounds. Each reduction wave was considerably diffusion-controlled and not completely reversible.

  • PDF

An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints (Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구)

  • CHANG, Dong Il;Lee, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Cellular and corrugated cross-sectioned thin-walled steel bridge-piers/columns

  • Ucak, Alper;Tsopelas, Panos
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.355-374
    • /
    • 2006
  • Thin walled steel bridge-piers/columns are vulnerable to damage, when subjected to earthquake excitations. Local buckling, global buckling or interaction between local and global buckling usually is the cause of this damage, which results in significant strength reduction of the member. In this study new innovative design concepts, "thin-walled corrugated steel columns" and "thin-walled cellular steel columns" are presented, which allow the column to undergo large plastic deformations without significant strength reduction; hence dissipate energy under cyclic loading. It is shown that, compared with the conventional designs, circular and stiffened box sections, these new innovative concepts might results in cost-effective designs, with improved buckling and ductility properties. Using a finite element model, that takes the non-linear material properties into consideration, it is shown that the corrugations will act like longitudinal stiffeners that are supporting each other, thus improving the buckling behavior and allowing for reduction of the overall wall thickness of the column.