• Title/Summary/Keyword: Reduction and oxidation

Search Result 1,429, Processing Time 0.03 seconds

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

A Study on environmental-friendly Cleaning for Si-wafers (환경친화적인 실리콘 웨이퍼 세정 연구)

  • Yoon, Hyoseob;Ryoo, Kunkul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.79-84
    • /
    • 2000
  • In this study, to reduce the consumption of chemicals in cleaning processes, Si-wafers contaiminated with metallic impurities were cleaned with electrolyzed water(EW), which was generated by the electrolysis of a diluted electrolyte solution or ultra pure water(UPW). Electrolyzed water could be controlled for obtaining wide ranges of pH and ORP(oxidation-reduction potential). The pH and oxidation-reduction potential of anode water and cathode water were measured to be 4.7 and +1000mV, and 6.3 and -550mV, respectively. To analyze the amount of metallic impurities on Si-wafer surfaces, ICP-MS was introduced. Anode water was effective for Cu removal, while cathode water was more effective for Fe removal.

  • PDF

A Study on Electric Potential Change by Pulse Voltage Polarity in Liquid (펄스전압의 극성에 따른 액중 전위변화에 관한 연구)

  • Kim Jin-Gyu;Kim Hyung-Pyo;Park Young-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • This paper proposes the new type of an ion exchange water generator system. The system has an +/- ion exchange membrane located in center and a diagonal-interdigit type electrode applied to a pulsed power. This system is studied in the liquid for the oxidation/reduction potential and the dissolved oxygen concentration by the polarity effects. Consequently, as a diagonal-interdigit type electrode is installed in each side of device, the oxidation/reduction potential and dissolved oxygen concentration by polarity changes and electrical resistivity differences be observed. An ion concentration in the ion exchange water generator system is increased by dissolved oxygen generated from oxidation/reduction potential changes.

A Study on the Source of Reductants for Nitrate Reduction in Rice (Oryza sativa cv. Tongil) Roots (벼(Oryza sativa cv. Tongil) 뿌리에 있어서 Nitrate 환원에 필요한 환원력의 공급원에 관한 연구)

  • Chang, Nam-Kee;Choe, Hong-Gwan
    • The Korean Journal of Ecology
    • /
    • v.7 no.2
    • /
    • pp.85-90
    • /
    • 1983
  • There was a decrease in nitrate reductase activity (NRA) measured in vivo in rice roots (Oryza sativa cv. Tongil) grown in anaerobic culture solution. But it was reversed by addition of malonate to the in vivo nitrate reduction assay medium. Malonate increased the in vivo NRA during 2-5 hours incubation and decreased it in longer incubation hours. In vivo NRA was stimulated by addition of NaHCO3 to the assay medium, but not by Na2CO3. The stimulation of NRA by NaHCO3 was not observed in shoot removed rice roots. It is suggested that CO2 from NaHCO3 is carboxylated by phosphoenol pyruvate carboxylase, results in increasing the malate contents in the roots, and stimulates the in vivo NRA. NADH needed in nitrate reduction is supported by malate oxidation. In rice roots, it seems probable that malate oxidation in the mitochondria is more important to nitrate reduction than malae oxidation in cytoplasm.

  • PDF

Studies on the Composition of Kimchi (Part 3) -Oxidation-reduction Potential during Kimchi Fermentation- (김치 성분에 관한 연구 (제 3 보) -동치미의 산화환원 전위에 대하여-)

  • Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.34-37
    • /
    • 1970
  • The variation of acidity, pH and oxidation-reduction potentials of Dongchimi (a kind of large raddish pickle) during its fermentation was investigated. Estimation of oxidation-reduction potentials was carried out by the electric method. 1. Acidity was increased-3.5% by lactic acid and pH was decreased 3.4 during Dongchimi fermentation. 2. In Dongchimi, oxidation-reduction potentials was comparatively high (rH above 10) in the earlier stage and then decreased rapidly from rH 15 to 2.0 but slightly increased rH 5.0 in the later stage of the fermentation. 3. It is suggested that the earlier stage of fermentation was more aerobic condition than the later stage.

  • PDF

Electrochemical Control of Metabolic Flux of Weissella kimchii sk10: Neutral Red Immobilized in Cytoplasmic Membrane as Electron Channel

  • PARK, SUN-MI;KANG, HYE-SUN;PARK, DAE-WON;PARK, DOO-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.80-85
    • /
    • 2005
  • Electrochemical control of the metabolic flux of W. kimchii sk10 on glucose and pyruvate was studied. The growing cell of W. kimchii sk10 produced 87.4 mM lactate, 69.3 mM ethanol, and 4.9mM lactate from 83.1mM glucose under oxidation condition of the anode compartment, but 98.9 mM lactate, 84.3mM ethanol, and 0.2 mM acetate were produced from 90.8 mM glucose under reduction condition of the cathode compartment for 24 h, respectively. The resting cell of W. kimchii sk10 produced 15.9 mM lactate and 15.2 mM acetate from 32.1 mM pyruvate under oxidation condition of the anode compartment, and 71.3 mM lactate and 3.8 mM acetate from 79.8mM pyruvate under reduction condition of the cathode compartment. The redox balance (NADH/$NAD^+$) of metabolites electrochemically produced from pyruvate was 1.05 and 18.76 under oxidation and reduction conditions, respectively. On the basis of these results, we suggest that the neutral red (NR) immobilized in bacterial membrane can function as an electron channel for the electron transfer between electrode and cytoplasm without dissipation of membrane potential, and that the bacterial fermentation of W. kimchii sk10 can be shifted to oxidized or reduced pathways by the electrochemical oxidation or reduction, respectively.

Utilization of Food Waste Extract as an Eco-friendly Biocatalyst for Indigo Reduction (식품 폐기물을 이용한 친환경 생촉매의 발굴과 인디고 환원에 응용)

  • Son, Kunghee;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • In this study, the validity of extracts from food waste as biocatalyst for indigo reduction was examined. Dried food wastes such as apple peel and corn waste were water-extracted and freeze-dried. The reducing power of extracts for indigo was evaluated by the oxidation-reduction potential(ORP) measurement of reduction bath and color strength(K/S value) of the fabrics dyed in the indigo reduction bath. Total sugar contents of the apple peel and corn waste extracts were 60.56% and 62.36%, respectively. Antioxidant activity was 64.78% for the extract of apple peel and 7.96% for the extract of corn waste. Indigo reduction took place quickly with both extracts, and maximum color strength was obtained up to 15.91 and 12.11 within 1-3 days, respectively. The oxidation-reduction potential of reduction bath was stabilized in the range of -500 ~ -620 mV according to the kinds of food waste and the extract concentration. At higher concentration of the extracts, reduction power was maintained for longer time and stronger color strength was obtained. Compared to sodium dithionite, the reducing power of the studied extracts was lower, but the reduction stability was superior to it. The studied extracts were effective biocatalyst as biodegradable and safe alternatives to sodium dithionite for indigo reduction.

Effect of Different Pretreatments on Indium-Tin Oxide Electrodes

  • Choi, Moonjeong;Jo, Kyungmin;Yang, Haesik
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.421-425
    • /
    • 2013
  • The effect of pretreatment on indium-tin oxide (ITO) electrodes has been rarely studied, although that on metal and carbon electrodes has been enormously done. The electrochemical and surface properties of ITO electrodes are investigated after 6 different pretreatments. The electrochemical behaviors for oxygen reduction, $Ru(NH_3){_6}^{3+}$ reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are compared, and the surface roughness, hydrophilicity, and surface chemical composition are also compared. Oxygen reduction, $Fe(CN){_6}^{3-}$ reduction, and p-hydroquinone oxidation are highly affected by the type of the pretreatment, whereas $Ru(NH_3){_6}^{3+}$ reduction is almost independent of it. Interestingly, oxygen reduction is significantly suppressed by the treatment in an HCl solution. The changes in surface roughness and composition are not high after each pretreatment, but the change in contact angle is substantial in some pretreatments.

Continuous Operation of $CO_2$/NOx-free 50kW Checmial-Looping Combustor ($CO_2$/NOx-free 50kW 매체순환식 가스연소기 산화-환원 연속반응 실증)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Yi, Chang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.227-234
    • /
    • 2004
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion(CLC) may yield great advantages of savings of energy to $CO_2$ separation and suppressing the effect on environment. In chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. The purpose of this study is to demonstrate inherent $CO_2$ separation and no NOx emission and to confirm high $CO_2$ selectivity, no side reaction (i.e., carbon deposition, hydrogen generation) by continuous reduction and oxidation experiment in a 50kWtb chemical-looping combustor. NiO/bentonite particle was used as a bed material and $CH_4$ and air were used as reacting gases for reduction and oxidation respectively.

  • PDF

The Effects of Electric Field Variation by The Third Electrode on Water Electrophysicochemical Characteristics (제3전극에 의한 전계변화가 수중 전기물리화학적 특성에 미치는 영향)

  • Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.136-141
    • /
    • 2010
  • In this paper, after the third electrode type oxidant generator which could format non-uniform electric field in water had been manufactured and installed, by direct electrolysis, the effects of the hydrogen potential and oxidation reduction potential characteristics attendant upon electric field change on a higher concentration oxidant generation characteristics were investigated. Consequently, as the third electrode was installed in the middle of two slit electrodes and the polarity of applied power was changed, it was observed that the third electrode system with the positive electrode can generate a higher concentration oxidant, hydrogen potential and oxidation reduction potential as compared with that of the negative electrode. It is because the positive electrode was bombarded mostly energetic electrons and the negative electrode was bombarded mainly by less energetic positive ions.