• Title/Summary/Keyword: Reduction Ratio in Height

Search Result 189, Processing Time 0.032 seconds

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Average Compressive Strengths of Stiffened Plates for In-Service Vessels Under Lateral Pressure (횡압력을 받는 실선 보강판의 평균압축강도)

  • Choung, Joon-Mo;Jeon, Sang-Ik;Lee, Min-Seong;Nam, Ji-Myung;Ha, Tae-Bum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.330-335
    • /
    • 2011
  • This paper presents estimation of average compressive strengths of three types of stiffened panels under lateral pressure and axial compression based on simplified formulas from CSRs and nonlinear FEAs. FEA scenarios are prepared based on the slenderness ratios of the stiffened panels used for in-service vessels. The seven step lateral pressures by 1bar increment are imposed on FE models assuming maximum 30m water height. The number of FEAs for FB-, AB-, and TB-stiffened panels is totally 189 times. FEA results show that existence of pressure can evolves significant reduction of ultimate strengths, meanwhile CSR formulas do not take into account the lateral pressure effect. Lateral pressure acting on the stiffened panel with higher column slenderness ratio more reduces the ultimate strengths than those with smaller column slenderness ratio. A new concept of relative average compressive strain energy instead of the ultimate strength is introduced in order to rationally compare the average compressive strength through complete compressive straining regime. The differences of the ultimate strengths between CSR formulas and FEA results are relatively small for FB- and AB-stiffened panels, but larger discrepancies of relative average compressive strain energies are shown.

A Study on the Vibration Analysis of a Deckhouse of Fishing Vessel (어선의 갑판실의 진동 해석법에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.3
    • /
    • pp.193-210
    • /
    • 1991
  • For the deckhouse or superstructure, attention is directed to the reduction of vibration from a human susceptibility point of view. The two basic requirements for obtaining a low vibration level in the accommodation are to ensure that excitation forces from propeller and/or main engine are small and to avoid resonance excitation of the hull and superstructure. In recent years increased attention has been directed towards the problems of vibration and noise in deckhouse, which have caused major problems with regard to the environmental quality in the living quarters for crews. Accordingly, in this paper, the characteristic of the vibration of deckhouse of fishing boat, of which the length/height ratio is also relatively high, are studied systematically with regard to the shape and modelling of deckhouse based on finite element method of 1-dimensional, 2-dimensional and 3-dimensional model. This study is divided into 4-part. 1st part is the global deckhouse vibration, 2nd part is the local deckhouse vibration, 3rd part consists of the estimation for stiffness of foundational support and 4th part is the application to TUNA LONG LINER of 416 ton class. For the global vibration analysis, the severity of the vibration depends on the longitudinal shear and bending stiffness of the deckhouse, on the vertical deckhouse support(fore, aft and sides). However, even if the design is technically sound, vibration problems may arise due to vertical or longitudinal hull girder or afterbody resonances. Author applied the method of this study to the analysis of, deep-sea fishing vessel of G.T. 416 ton class with relatively low height and long deckhouse, and investigated the vibrational characteristic of the fishing vessel with earlier structural feature. According to this investigation, the vibration, response of above vessel was confirmed of which main hull and deckhouse behave as one body. It is at the bottom of vibrational trouble which a accommodation part of the fishing vessel is raised, that is the local vibration for side wall, fore-aft wall and deck plate of deckhouse rather than thief fect of fore-aft vibration of deckhouse for above fishing vessel. and the resonance of main hull, deckhouse and driving system such as the main engine, propeller in exciting source is mainly brought up as the trouble.

  • PDF

Body Weight Perception and Weight Loss Practices among Private College Students in Kelantan State, Malaysia

  • Badrin, Salziyan;Daud, Norwati;Ismail, Shaiful Bahari
    • Korean Journal of Family Medicine
    • /
    • v.39 no.6
    • /
    • pp.355-359
    • /
    • 2018
  • Background: Body image is associated with the perception of people on themselves. Influencing factors are generated internally and/or externally. The most common issue pertaining to body image is body weight and weight loss. This study aimed to determine the association between body weight perception and weight loss practices among college students. Methods: A cross-sectional study was conducted involving 297 college students from private nursing colleges in the state of Kelantan, Malaysia. A self-administered questionnaire was used to assess sociodemographic characteristics, body weight perception, and weight loss methods. Weight and height were measured, and body mass index (BMI) was calculated based on weight and height measurement. The World Health Organization BMI cutoffs were applied in the study. Results: More than half (54.2%) of college students perceived their weight correctly as per actual measured BMI. A total of 51.5% of participants had tried various methods to reduce their weight. Body weight perception is associated with weight loss practices (odds ratio, 0.31; 95% confidence interval, 0.19-0.50; P<0.001) adjusted for sex, marital status, and status of having obese family members. Those who had correct body weight perception were less likely to engage in weight loss practice. Food intake restriction (42.4%) is the most popular weight reduction method among students in nursing colleges. Over a quarter of the participants chose physical exercise (25.3%) to reduce their weight, and a small number engaged in unhealthy weight loss practices. Conclusion: Body weight perception is an important factor that influences the practice to reduce weight especially among young adult group and college students.

Minimum 2-Year Follow-Up Result of Degenerative Spinal Stenosis Treated with Interspinous U ($Coflex^{TM}$)

  • Park, Seong-Cheol;Yoon, Sang-Hoon;Hong, Yong-Pyo;Kim, Ki-Jeong;Chung, Sang-Ki;Kim, Hyun-Jib
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.292-299
    • /
    • 2009
  • Objective : Clinical and radiological results of posterior dynamic stabilization using interspinous U (ISU, $Coflex^{TM}$, Paradigm Spine $Inc.^{(R)}$, NY, USA) were analyzed in comparison with posterior lumbar interbody fusion (PLIF) in degenerative lumbar spinal stenosis (LSS). Methods : A retrospective study was conducted for a consecutive series of 61 patients with degenerative LSS between May 2003 and December 2005. We included only the patients completed minimum 24 months follow up evaluation. Among them, 30 patients were treated with implantation of ISU after decompressive laminectomy (Group ISU) and 31 patients were treated with wide decompressive laminectomy and posterior lumbar interbody fusion (PLIF; Group PLIF). We evaluated visual analogue scale (VAS) and Oswestry Disability Index (ODI) for clinical outcomes (VAS, ODI), disc height ratio disc height (DH), disc height/vertebral body length ${\times}100$), static vertebral slip (VS) and depth of maximal radiolucent gap between ISU and spinous process) in preoperative, immediate postoperative and last follow up. Results : The mean age of group ISU ($66.2{\pm}6.7$ years) was 6.2 years older than the mean age of group PLIF ($60.4{\pm}8.1$ years; p=0.003). In both groups, clinical measures improved significantly than preoperative values (p<0.001). Operation time and blood loss was significantly shorter and lower in group ISU than group PLIF (p<0.001). In group ISU, the DH increased transiently in immediate postoperative period ($15.7{\pm}4.5%{\rightarrow}18.6{\pm}5.9%$), however decreased significantly in last follow up ($13.8{\pm}6.6%$, p=0.027). Vertebral slip (VS) of spondylolisthesis in group ISU increased during postoperative follow-up ($2.3{\pm}3.3{\rightarrow}8.7{\pm}6.2$, p=0.040). Meanwhile, the postoperatively improved DH and VS was maintained in group PLIF in last follow up. Conclusion : According to our result, implantation of ISU after decompressive laminectomy in degenerative LSS is less invasive and provides similar clinical outcome in comparison with the instrumented fusion. However, the device has only transient effect on the postoperative restoration of disc height and reduction of slip in spondylolisthesis. Therefore, in the biomechanical standpoint, it is hard to expect that use of Interspinous U in decompressive laminectomy for degenerative LSS had long term beneficial effect.

Studies on Optimum Shading for Seedling Cultivation of Cornus controversa and C. walteri (층층나무와 말채나무 양묘(養苗)시 적정(適正) 차광율(遮光率)에 관한 연구(硏究))

  • Kim, Jong Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.591-597
    • /
    • 2000
  • This studies were carried out to investigate the optimum shading for seedling cultivation of Cornus controversa and C. walteri. The experiment was performed under five different shading scheme such as 100%, 50%, 30%, 10%, and 2% of the natural full sun light intensity for 7 months in the field condition. Two species showed the highest height growth under 50% of relative light intensity, and the highest diameter growth at root collar was observed both under 100% and 50% of relative light intensity. C. controversa seedlings grown under 50% of relative light intensity produced more total biomass than control seedlings, but root biomass was less in the seedlings under 50% of relative light intensity. In case of C. walteri, total biomass production of the seedlings under 50% of relative light intensity was lower than that of the seedlings under full sun light intensity, but leaves and shoot biomass was slightly high under 50% of relative light intensity. Great reductions of height growth and diameter growth at root collar, and biomass production were observed below 30% of relative light intensity in the both species. T/R ratio of the two species was highest under 30% of relative light intensity, and the chlorophyll content of the seedlings tended to be increased by reduction of relative light intensity.

  • PDF

A Study about the Change of Locations of the Center of Resistance According to the Decrease of Alveolar Bone Heights and Root Lengths during Anterior Teeth Retraction using the Laser Reflection Technique (Laser 반사측정법을 이용한 전치부 후방 견인시 치조골 높이와 치근길이 감소에 따른 저항중심의 위치변화에 관한 연구)

  • Min, Young-Gyu;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.29 no.2 s.73
    • /
    • pp.165-181
    • /
    • 1999
  • Treatment mechanics should be individualized to be suitable for each patient's personal teeth and anatomic environment to get a best treatment result with the least harmful effects to teeth and surrounding tissues. Especially, the change of biomechanical reaction associated with that of the centers of resistance of teeth should be considered when crown-to-root ratio changed due to problematic root resorption and/or periodontal disease during adult orthodontic treatment. At the present study, in order to investigate patterns of initial displacements of anterior teeth under certain orthodontic force when crown-to-root ratio changed in not only normal periodontal condition but also abnormal periodontal and/or teeth condition, the changes of the centers of resistance for maxillary and mandibular 6 anterior teeth as a segment were studied using the laser reflection technique, the lever & pulley force applicator and the photodetector with these quantified variables reducing alveolar bone 2mm by 2mm for each of maxillary 6 anterior teeth until the total amount of 8mm and root 2mm by 2mm for each of mandibular 6 anterior ones until the total amount of 6mm. The results were as follows: 1. Under unreduced condition, the center of resistance during initial displacement of maxillary 6 anterior teeth was located at the point of about $42.4\%$ apically from cemento-enamel junction(CEJ) of the averaged tooth of them and kept shifting to about $76.7\%$ with alveolar bone reduction. 2. The distance from the averaged alveolar crest level of maxillary 6 anterior teeth to the center of resistance for the averaged tooth of them kept decreasing with alveolar bone reduction, but the ratio to length of the averaged root embedded in the alveolar bone was stable at around $33\%$ regardless of that. 3. Under unreduced condition, the center of resistance during initial displacement of mandibular 6 anterior teeth was located at the Point of about $43\%$ apically from CEJ of the averaged tooth of them and this ratio kept increasing to about $54\%$ with root reduction. But the distance from CEJ to the center of resistance decreased from around 5.3mm to around 3.3mm, that is to say, the center of resistance kept shifting toward CEJ with the shortening of root length. 4. A unit reduction of alveolar bone had greater effects on the change of the centers of resistance than that of root did during initial Phase of each reduction. But both of them had similar effects at the middle region of whole length of the averaged root.

  • PDF

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.

Effects of Irrigation Methods of Deep Sea Water on the Growth of Plug Seedlings (육묘 시 해양심층수의 관수 방법이 유묘의 생장에 미치는 영향)

  • Hong Sung-Yu;Yoon Byeong-Sung;Kang Won-Hee
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.156-161
    • /
    • 2006
  • Overhead and sub-irrigation of deep sea water to tomato seedlings reduced the height as 50% and 58% than control plants. In the same treatment with surface sea water and NaCl water, the reduced rate in tomato seedlings' height were 49% and 56% in overhead irrigation, and 47% and 57% in sub-irrigation, respectively. Most effective method for the inhibition of the growth of the seedling was sub-irrigation method, which supplied water through the roots. No significant difference was observed on fresh weight of the upper part of tomato and cucumber seedlings, though the sub-irrigation reduced the fresh weight than the overhead irrigation. The reduced rate of fresh weight of seedlings by overhead irrigation was by 38% and sub-irrigation by 49% as compared to control. Similarly dry weight of upper and under soil parts of seedlings showed same trend of results thereof as fresh weight. This result can be traced to reduction of growth caused by salts in the water. In stem diameter of seedlings no significant difference was observed between two irrigation methods, even though both deep sea and NaCl water reduced stem diameter, as compared to control water. Overhead irrigation can be chosen by seedling producers because of better seedling quality by using TH ratio. Seedling compactness were not noticed in both the overhead and sub-irrigation. Sub-irrigation was found more effective method far the inhibition of height and compactness of tomato seedlings. Higher the concentration of NaCl, deep sea, and surface sea water, lesser the growth in height, fresh and dry weight, stem diameter, and leaf area was obtained. No significant difference was found, though sub-irrigation suppress the growth of seedlings.

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.