• Title/Summary/Keyword: Reducing friction

Search Result 242, Processing Time 0.028 seconds

Evaluation of Sliding Friction Properties of Laser Surface Texturing Dimple Pattern with DLC Coating under GaInSn Liquid Metal Lubricant (액체금속(GaInSn)윤활하에서 DLC(ta-C) 코팅된 레이저 표면 텍스쳐링 딤플패턴의 미끄럼 마찰특성평가)

  • Kwon, Gyubin;Jang, Youngjun;Chae, Younghun
    • Tribology and Lubricants
    • /
    • v.37 no.3
    • /
    • pp.106-111
    • /
    • 2021
  • There are several studies on reducing the friction that occurs on the relative sliding contact surface of moving parts under extreme environments. In particular, a solid lubricated bearing is studied to solve the tribological problem with friction reduction and durability parts using solid lubricants (lead or silver) in a vacuum atmosphere. Galinstan is mainly used as a liquid metal lubricant, but it is inevitable to have limited tribological applications owing to its high coefficient of friction. Many researchers work on surface texturing for surface modification and precision processing methods. To increase durability and low friction, DLC coating with hydrophobicity is applied on the contact surface texture. Therefore, using an untextured specimen, a dimple specimen, and a DLC-coated dimple specimen under liquid metal lubrication, this paper presents the following experimental sliding friction characteristics in the sliding friction test. 1) The average coefficient of friction of the DLC-coated dimple specimen and dimple specimen are lower compared to that of a non-patterned specimen. 2) In the DLC-coated dimple specimens, the average coefficient of friction changes according to the change in the dimple density. 3) DLC-coated dimple specimens with a density of 12.5 have the lowest average coefficient of friction under 41.6 N of normal load and 143.3 RPM.

Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 (겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

A study on the development of a Fe-based organic Drake lining with sponge structure for rolling stock of 150km/h train (150km/h급 비석면 스폰지형 철계 브레이크 라이닝 개발 연구)

  • 최경진;이동형;고광범;권영필
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.219-225
    • /
    • 2000
  • This study is to develop a Fe-based disc brake lining with sponge structure for rolling stock of 150km/h train and to concept design with 3 groove type for brake disc reducing hot hair-crack and certainly friction coefficient. The developing brake lining would be to presumption of saving 300 million won during one year

  • PDF

High Temperature Lubrication with Phosphate Esters

  • Hanyaloglu, Bengi
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.177-183
    • /
    • 1995
  • Recent work with phosphate esters has shown that a lubricious polymeric film can formed from the vapor phase on interacting during and sliding. This lubrication technique has led to methods to reduce friction and wear to very low values at high temperatures up to 700$^{\circ}$C. Preliminary with synthetic tri aryl phosphates are very promising. The vaporized lubricant forms a polymeric film on the sliding and rolling surfaces reducing the coefficient of friction below 0.05. In-situ formation of the polymeric films shows that the polymer that is formed on the surface exists in different states depending on surface temperature.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

Effect of Angle and Density of Grooves between Friction Plate Segments on Drag Torque in Wet Clutch of Automatic Transmission (마찰재 그루브에 따른 습식 클러치 드래그 토크 변화 연구)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • As the importance of transmission efficiency to reducing fuel consumption and conserving the environment rapidly increases, reducing the drag torque in an automotive wet clutch is emerging as an important issue in the automotive industry. The drag torque in a clutch occurs from viscous drag generated by automatic transmission fluid in the narrow gap between separate friction plates. In this study, the drag torques in an automotive wet clutch are investigated with respect to the angle and density of the grooves between separate friction plates by three-dimensional finite element simulation of a single set of wet clutch disks considering the two-phase flow of air and oil. The simulation results shows that the drag torque generally increases with the rotational speed to a critical point and then decreases at the high-speed regime. The grooves between the plates plays an important role in reducing the drag peak, and the inclined angle of the grooves affects the oil flow. The grooves with an angle of $50^{\circ}$ shows the lowest drag torques at both low and high speeds. The flow vectors inside the $50^{\circ}$ grooves shows clear evidence that the fluid flows out more easily from the grooves compared with the flow vectors inside grooves with lower angles. The simulation results shows that increasing the number of grooves (density of grooves) decreases the drag torque.

Development of a quantification method for modelling the energy budget of water distribution system (상수관망 에너지 모의를 위한 정량화 분석기법 개발)

  • Choi, Doo Yong;Kim, Sanghyun;Kim, Kyoung-Pilc
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1223-1234
    • /
    • 2022
  • Efforts for reducing greenhouse gas emission coping with climate change have also been performed in the field of water and wastewater works. In particular, the technical development for reducing energy has been applied in operating water distribution system. The reduction of energy in water distribution system can be achieved by reducing structural loss induced by topographic variation and operational loss induced by leakage and friction. However, both analytical and numerical approaches for analyzing energy budget of water distribution system has been challengeable because energy components are affected by the complex interaction of affecting factors. This research drew mathematical equations for 5 types of state (hypothetical, ideal, leak-included ideal, leak-excluded real, and real), which depend on the assumptions of topographic variation, leakage, and friction. Furthermore, the derived equations are schematically illustrated and applied into simple water network. The suggested method makes water utilities quantify, classify, and evaluate the energy of water distribution system.

Study on Tribological Characteristics of Machine Component in Boundary Lubrication (경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구)

  • Kim, Myeong-Gu;Seo, Kuk-Jin;Nam, Jahyun;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.356-361
    • /
    • 2019
  • The friction and wear between machine components directly influence the energy loss and failure in various machines. Therefore, there is always a demand for finding methods to reduce friction and wear. Of the possible methods, lubrication is a widely used method for reducing friction and wear. In the case of lubrication, it is important to analyze the tribological behavior in the boundary lubrication because most of friction and wear occurs in the boundary lubrication regime. Cast iron has been regarded as a good material for industrial applications due to the excellent mechanical properties and high productivity. Especially, nodular cast iron is a material that shows better mechanical properties and wear-resistance compared with cast iron due to inclusion of spheroidal graphite. In this work, we investigated the tribological characteristics of nodular cast iron with respect to different counter parts in boundary lubrication regime. Sliding tests were conducted with SUJ2, ZrO2, Si3N4 balls as counter parts using a pin-on-disk type tribotester. The results showed different friction and wear behaviors with different counter parts. The case of ZrO2 showed the lowest wear rate in specimen and no significant ball wear. In case of SUJ2, it showed similar wear rate with ZrO2 case in specimen and the highest friction coefficient. The case of Si3N4 showed the lowest friction coefficient, 33% lower than the case of SUJ2. It showed 16.9 times larger wear rate in specimen and 43% larger wear rate in ball compared to that of the SUJ2 case.

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.