• Title/Summary/Keyword: Reducing Transformation

Search Result 178, Processing Time 0.023 seconds

A Study on LCMV Beamforming Method of Quadratic Pattern Constraints (2차패턴 구속의 LCMV 빔형성 방법 연구)

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.343-348
    • /
    • 2022
  • The STAP system suppresses clutter and jamming of the radar signal, but required a large number of samples for optimal performance. A large number of samples increases the signal processing computation. Therefore, there is need for a transformation method for reducing the signal rank. The LCMV beamforming method can easily set the distortion-free-constraint in the direction of arrival, and the beamforming scaling is excellent, so that overall rank can be reduced. In this study, the information of target is estimated using the proposed quadratic pattern constraints(QPC) and LCMV beamforming methods. The proposed method can perform beam pattern control in a desired direction according to the number of constraint conditions as a secondary pattern constraint condition. Through simulation, the performance of the propose method is verified. As a result on th simulation, the desired target was estimated when the proposed method had an angular resolution of 10 degrees or more, but it was not possible to accurately estimate the desired target when the angular resolution was less than 10 degrees.

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

An Optimal Route Algorithm for Automated Vehicle in Monitoring Road Infrastructure (도로 인프라 모니터링을 위한 자율주행 차량 최적경로 알고리즘)

  • Kyuok Kim;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.265-275
    • /
    • 2023
  • The purpose of this paper is to devise an optimal route allocation algorithm for automated vehicle(AV) in monitoring quality of road infrastructure to support the road safety. The tasks of an AV in this paper include visiting node-links at least once during its operation and checking status of road infrastructure, and coming back to its depot.. In selecting optimal route, its priority goal is visiting the node-links with higher risks while reducing costs caused by operation. To deal with the problem, authors devised reward maximizing algorithm for AVs. To check its validity, the authors developed simple toy network that mimic node-link networks and assigned costs and rewards for each node-link. With the toy network, the reward maximizing algorithm worked well as it visited the node-link with higher risks earlier then chinese postman route algorithm (Eiselt, Gendreau, Laporte, 1995). For further research, the reward maximizing algorithm should be tested its validity in a more complex network that mimic the real-life.

Analysis of Shadow Work by Changes in Ministry of SMEs and Startups Consulting Work Management Systems (중소벤처기업부 상담업무 관리시스템 변화에 따른 그림자 노동 분석)

  • Sujin An;Joon Koh
    • Informatization Policy
    • /
    • v.30 no.2
    • /
    • pp.86-108
    • /
    • 2023
  • This study attempts to explain phenomenologically the shadow work that occurs among Kwangju·Jeonnam business support counselors as video consultation increases due to the counseling management systems used in business consulting for SMEs and digital transformation since COVID-19. Since digital shadow work is widespread, it has been considered basic and mandatory work, not recognized as shadow work itself, assuming that it is continuously used for a long time. We found that, in the case of the newly expanded video consulting systems, most of the users complain of burden and inconvenience and tend to choose face-to-face despite the time and cost savings associated with the former. These study results practically suggest that, in order to implement such digital systems successfully, a well-prepared system, an elaborate way of reducing the burden and inconvenience, and an adaptation period are considered critical as they can minimize the shadow work of users.

The Foreign Asset Leverage Effect of Oil & Gas Companies after the Financial Crisis (금융위기 이후 정유산업의 외화자산 레버리지효과 분석)

  • Dong-Gyun Kim
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.19-38
    • /
    • 2021
  • This study aims to analyze the foreign asset leverage effect on Korean oil & gas companies' foreign profits and to maintain the appropriate foreign asset volume for reducing exchange risk. For a long time, large Korean companies, including oil companies, overheld foreign currency liabilities. For this reason, most large companies have been burdened to hedge exchange risk and this excess limit holding deteriorated total profit and reduced foreign currency asset management efficiency. Our paper proceeds in presenting a three-stage analysis considering diversified exchange risk factors through estimation on transformation of foreign transactions a/c including annual trends of foreign asset and industry specifics. We also supplement incomplete the estimation method through a practical hedging case investigation. Our research parts are differentiated on the analyzing four periods considering period-specifics The FER value of the oil firms ranged from -0.3 to +2.3 over the entire period. The results of the FER Value are volatile and irregular; those results do not represent the industry standard comparative index. The Korean oil firms are over the credit limit without accurate prediction and finance high interest rate funds from foreign-owned banks on the basis on a biased relationship. Since the IMF crisis, liabilities of global firms have decreased. Above all, oil firms need to finance a minimum limit without opportunity losses on the demand forecast and prepare for uncertainty in the market. To reduce exchange risk from the over-the-limit position, we must consider factors that affect the corporate exchange risk on the entire business process, including the contract phase.

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Calculation of Expected Sliding Distance of Concrete Caisson of Vertical Breakwater Considering Variability in Wave Direction (파향의 변동성을 고려한 직립방파제 콘크리트 케이슨의 기대활동량 산정)

  • 홍수영;서경덕;권혁민
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-38
    • /
    • 2004
  • In this study, the reliability design method developed by Shimosako and Takahashi in 1999 for calculation of the expected sliding distance of the caisson of a vertical breakwater is extended to take into account the variability in wave direction such as directional spreading of waves, obliquity of the deep-water design principal wave direction from the shore-normal direction, and its variation about the design value. To calculate the transformation of random directional waves, the model developed by Kweon et al. in 1997 is used instead of Goda's model, which was developed in 1975 for unidirectional random waves normally incident to a straight coast with parallel depth contours and has been used by Shimosako and Takahashi. The effects of directional spreading and the variation of deep-water principal wave directions were minor compared with those of the obliquity of the deep-water design principal wave direction from the shore-normal direction, which tends to reduce the expected sliding distance as it increases. Especially when we used the field data in a part of east coast of Korea, considering the variability in wave directions reduced the expected sliding distance to about one third of that not considering the directional variability. Reducing the significant wave height calculated at the design site by 6% to correct the effect of wave refraction neglected in using Goda's model was found to be proper when the deep-water design principal wave direction is about 20 degrees. When it is smaller than 20 degrees, a value smaller than 6% should be used, or vice versa. When we designed the caisson with the expected sliding distance to be 30㎝, in the area of water depth of 25 m or smaller, we could reduce the caisson width by about 30% at the maximum compared with the deterministic design, even if we did not consider the variability in wave directions. When we used the field data in a part of east coast of Korea, considering the variability in wave directions reduced the necessary caisson width by about 10% at the maximum compared with that not considering the directional variability, and is needed a caisson width smaller than that of the deterministic design in the whole range of water depth considered (10∼30 m).

A New Preprocessing Method for the Seedup of the Watershed-based Image Segmentation (분수계 기반 영상 분할의 속도 개선을 위한 새로운 전처리 방법)

  • Cho, Sang-Hyun;Choi, Heung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, a new preprocessing method is proposed to speedup the watershed-based image segmentation In the proposed method, the gradient correction values of ramp edges are calculated from the positions and width of the ramp edges using Laplacian operator, and then, unlike the conventional method in which the monoscale or multi scale gradient image is directly used as a reference iImage, the reference image is obtained by adding the threshold value to each position of the ramp edges in the monoscale gradient image And the marker image is reconstructed on the reference image by erosion By preprocessing the image for the watershed transformation in such a manner, we can reduce the oversegmentations far more than those of applying the conventional morphological filter to the simple monoscale or multiscale gradient-based reference image Thus, we can reduce the total image segmentation time by reducing the time of postprocessing of region merging, which consumes most of the processing time In the watershed-based image segmentation, Experimental results indicate that the proposed method can speedup the total image segmentation about twice than those of the conventional methods, without the loss of ramp edges and principal edges around the dense-edge region.

  • PDF

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.