• Title/Summary/Keyword: Reduced ring

Search Result 394, Processing Time 0.026 seconds

Heat shock protein 90 inhibitor AUY922 attenuates platelet-derived growth factor-BB-induced migration and proliferation of vascular smooth muscle cells

  • Kim, Jisu;Lee, Kang Pa;Kim, Bom Sahn;Lee, Sang Ju;Moon, Byung Seok;Baek, Suji
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2020
  • Luminespib (AUY922), a heat shock proteins 90 inhibitor, has anti-neoplastic and antitumor effects. However, it is not clear whether AUY922 affects events in vascular diseases. We investigated the effects of AUY922 on the platelet-derived growth factor (PDGF)-BB-stimulated proliferation and migration of vascular smooth muscle cells (VSMC). VSMC viability was detected using the XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reagent. To detect the attenuating effects of AUY922 on PDGF-BB-induced VSMCs migration in vitro, we performed the Boyden chamber and scratch wound healing assays. To identify AUY922-mediated changes in the signaling pathway, the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) 1/2 was analyzed by immunoblotting. The inhibitory effects of AUY922 on migration and proliferation ex vivo were tested using an aortic ring assay. AUY922 was not cytotoxic at concentrations up to 5 nM. PDGF-BB-induced VSMC proliferation, migration, and sprout outgrowth were significantly decreased by AUY922 in a dose-dependent manner. AUY922 significantly reduced the PDGF-BB-stimulated phosphorylation of Akt and ERK1/2. Furthermore, PD98059 (a selective ERK1/2 inhibitor) and LY294002 (a selective Akt inhibitor) decreased VSMC migration and proliferation by inhibiting phosphorylation of Akt and ERK1/2. Greater attenuation of PDGF-BB-induced cell viability and migration was observed upon treatment with PD98059 or LY294002 in combination with AUY922. AUY922 showed anti-proliferation and anti-migration effects towards PDGF-BB-induced VSMCs by regulating the phosphorylation of ERK1/2 and Akt. Thus, AUY922 is a candidate for the treatment of atherosclerosis and restenosis.

Semi-longitudinal study of adenoid and jaw growth of normal occlusal children aged 6 to 17 (6세에서 17세 사이의 정상 교합 아동의 아데노이드와 악골의 성장에 관한 준종단적 연구)

  • Yu, Hyung-Soeg;Park, Sun-Hyung;Choi, Eun-Bin;Mun, Je-Sang;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.699-712
    • /
    • 2000
  • Reduced nasal breathing can influence the growth at)d development of facial structures. It nay have many causes, and enlarged adenoid is the most frequent one. To investigate the effects of adenoids to jaw growth, we must first understand the normal growth of adenoids and jaws, and the relationship between size of adenoids and the values lot the jaw variables. The purpose of this study is to present a more objective standard of nasopharyngeal size and jaw dimension at each bone age, by using Cervical Vertebrae Maturation Index(CYMI) of Hassel, from normal occlusion children aged 6 to 17. The results of this study suggests as follows : 1. At same bone age, female's chronologic age was about 2 year older than male. 2. There was a growth peak of nasopharyngeal(NP) height and depth between CVMI 1 to 2 in male, hut in female NP height and depth gradually increase through CVMI 1 to 6. 3. Relative airway of nasopharynx increases the most between CVMI 1 to 2 period in both gender 4. Among adenoid measurements, Ad2-related variables and upper pharynx, and among dentofacial measurements inter canine width in both arch, maxillary intermolar width and palatal depth had high correlation coefficient with adenoid percentage.

  • PDF

The Effect of Barrel Vibration Intensity to the Plating Thickness Distribution

  • Lee, Jun-Ho;Roselle D. Llido
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.15-15
    • /
    • 1999
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the conventional rotating barrel. vibrational barrel (vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components, The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed that the average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value, Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components, However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. $2HD{\;}+{\;}e{\;}{\rightarrow}20H{\;}+{\;}H_2$ Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure thereby resulting to bad plating condition. 1 lot of chip was divided into two equal partion. Each portion was loaded to the same barrel one after the other. Nickel plating and tin-lead plating was performed in the same station. Portion A maintained the normal barrel vibration intensity and portion B vibration intensity was increased two steps higher. All other parameters, current, solution condition were maintained constant. Generally, plating method find procedures were carried out in a best way to maintained the best plating condition. After plating, samples were taken out from each portion. molded and polished. Plating thickness was investigated for both. To check consistency of results. 2nd trial was done now using different lot of another characteristics.

  • PDF

A ubiquitin-proteasome system as a determination factor involved in methylmercury toxicity

  • Hwang, Gi-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.46-54
    • /
    • 2006
  • The methylmercury (MeHg) is a toxic environmental pollutant, causing serious neurological and developmental effects in humans. Recent epidemiological studies have indicated that ingestion of MeHg in fish during pregnancy can result in neuroethological effects in the offspring. However, the mechanism underlying the MeHg-toxicity is not fully understood. To elucidate the mechanisms of toxicity of MeHg and of defense against MeHg, we searched for factors that determine the sensitivity of yeast cells to MeHg, and found that overexpression of Cdc34, a ubiquitin-conjugating enzyme (E2) that is a component of the ubiquitin-proteasome (UP) system, induces a resistance to MeHg toxicity in both yeast and human cells. The UP system is involved in the intracellular degradation of proteins. When Cdc34 is overexpressed in cells, ubiquitination reactions are activated and the degradation of certain proteins by the UP system is enhanced. Therefore, it seems likely that certain as-yet-unidentified proteins that increase MeHg toxicity might exist in cons and that toxicity might be reduced by the enhanced degradation of such proteins, mediated by the UP system, when Cdc34 is overexpressed. SCF ubiquitin-ligase is a component of UP system and consists of Skpl, the scaffold protein Cdc53, the RING-finger protein Hrt1, and one member of the family of F-box proteins. The F-box proteins directly bind to the substrates and are the determinants of substrate specificity of SCF. Therefore, we searched for the f-box protein that cofers resistance to MeHg, and found that overexpression of Hrt3 or Yi1224w induced resistance to MeHg toxicity in yeast cells. Since the protein(5) that enhance toxicity of MeHg might plausibly be induced in substrates of both f-box proteins, we next searched for substrate proteins that are recognized by Hrt3 or Y1r224w using two-hybrid screen. We found that Did3 or Crsl interacts with Hrt3; and Eno2 interacts with Yir224w. The yeast cells that overexpressed each those proteins showed hypersensitivity to MeHg, respectively, indicating that those proteins enhance the MeHg toxicity. Both Dld3 and Eno2 are proteins involved in the synthesis of pyruvate, and overexpression of both proteins might induce increase in interacellular levels of pyruvate. Deletion of Yi1006w that transports pyruvate into the mitochondria induced aresistance to MeHg. These results suggest that the promotion of the pyruvate irdlowinto the mitochondria might enhance MeHg toxicity. This study providesimportant keyfor the elucidauon of the molecular mechanism of MeHg toxicity.

  • PDF

Preparation and Properties of $N^1,N^1,N^4,N^4$-Tetrakis(hydroxyethyl)cyclohexanetrans-1,4-dicarboxamide as a Crosslinker of Polyester Powder Coatings (폴리에스터계 분체도료용 경화제 $N^1,N^1,N^4,N^4$-Tetrakis(hydroxethyl) cyclohexane-trans-1,4-dicarboxamide의 제조 및 특성)

  • Jung, Hong-Ryun;Heo, Joon;Lee, Wan-Jin;Kim, Hyung Jin;Lim, Hyung Soo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.195-200
    • /
    • 2009
  • To develop a crosslinker for the polyester powder coatings, $N^1,N^1,N^4,N^4$-tetrakis(hydroxyethyl)cyclohexane-1,4-dicarboxamide (Cy-${\beta}-HAA$), incorporated with a cyclohexane ring within the main chain of commercial ${\beta}-hydroxyalkylamide$ (${\beta}-HAA$), was prepared from the amidation of dimethyl trans-1,4-cyclohexanedicarboxylate and diethanolamine in the presence of $NaOCH_3$, The structure of $Cy-{\beta}-HAA$ was confirmed by its NMR, FT-IR and ESI-MS spectra. $Cy-{\beta}-HAA$ was thermally more stable than ${\beta}-HAA$. When $Cy-{\beta}-HAA$ was used as a crosslinker for the polyester powder coatings, it provided the smooth coating surface and reduced the formation of pinholes in the coating surface with comparison with ${\beta}-HAA$.

A 10-bit 100 MSPS CMOS D/A Converter with a Self Calibration Current Bias Circuit (Self Calibration Current Bias 회로에 의한 10-bit 100 MSPS CMOS D/A 변환기의 설계)

  • 이한수;송원철;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.83-94
    • /
    • 2003
  • In this paper. a highly linear and low glitch CMOS current mode digital-to-analog converter (DAC) by self calibration bias circuit is proposed. The architecture of the DAC is based on a current steering 6+4 segmented type and new switching scheme for the current cell matrix, which reduced non-linearity error and graded error. In order to achieve a high performance DAC . novel current cell with a low spurious deglitching circuit and a new inverse thermometer decoder are proposed. The prototype DAC was implemented in a 0.35${\mu}{\textrm}{m}$ n-well CMOS technology. Experimental result show that SFDR is 60 ㏈ when sampling frequency is 32MHz and DAC output frequency is 7.92MHz. The DAC dissipates 46 mW at a 3.3 Volt single power supply and occupies a chip area of 1350${\mu}{\textrm}{m}$ ${\times}$750${\mu}{\textrm}{m}$.

Induction of Muscle Atrophy by Dexamethasone and Hydrogen Peroxide in Differentiated C2C12 Myotubes (C2C12 근관세포에서 dexamethasone 및 hydrogen peroxide에 의한 근위축 유도)

  • Park, Cheol;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1479-1485
    • /
    • 2017
  • Muscle atrophy due to aging, starvation, and various chronic diseases leads to a decrease in muscle fiber area and density due to reduced muscle protein synthesis and increased protein breakdown. This study investigated the effect of dexamethasone and hydrogen peroxide on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes. C2C12 myoblasts were differentiated into myotubes in differentiation medium. During myoblast differentiation, muscle-specific transcription factors, such as myogenin, and MyoD expression increased. Differentiated C2C12 myotubes exposed to noncytotoxic levels of dexamethasone and hydrogen peroxide showed a decrease in myotube diameter, which was associated with up-regulation of muscle-specific ubiquitin ligases, such as muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and down-regulation of myogenin and MyoD. These results demonstrated that dexamethasone and hydrogen peroxide induced atrophy through regulation of muscle-specific ubiquitin ligases and muscle-specific transcription factors in C2C12 myotubes. In this study, we confirmed the process of differentiation of C2C12 myoblasts into myotubes in in vitro experiments in the presence of atrophy. This muscle atrophy model of C2C12 cells induced by dexamethasone or hydrogen peroxide seems suited to studies of the mechanism of muscle atrophy suppression and to exploit the experiment for excavating new muscle atrophy.

Reaction of Dehydrated Ag$_2$Ca$_5$-A with Cesium. Crystal Structures of Fully Dehydrated Ag$_2$Ca$_5$-A and Ag$_2$Cs$_{10}$-A

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.243-247
    • /
    • 1989
  • Two crystal structures of dehydrated $Ag^+\;and\;Ca^{2+}$ exchanged zeolite A, $Ag_2Ca_$5-A, reacting with 0.01 Torr of Cs vapor at $200^{\circ}C$ for 2 hours and 0.1 Torr of Cs vapor at $250^{\circ}C$ for 48 hours, respectively, have been determined by single crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at $21(1)^{\circ}C$. The stoichiometry of first crystal was $Ag_2Ca_5$-A (a = 12.294(1)${\AA}$), indicating that Cs vapor did not react with cations in zeolite A and that of second crystal was $Ag_2Cs_{10}$-A (a = 12.166(1)${\AA}$), indicating that all $Ca^{2+}$ ions were reduced by Cs vapor and replaced by $Cs^+$ ions. Full-matrix least-squares refinements of $Ag_2Ca_5-A\;and\;Ag_2Cs_{10}$-A has converged to the final error indices, $R_1\;=\;0.041\;and\;R_2$ = 0.048 with 227 reflections, and $R_1\;=\;0.117\;an\;n\;fdd\;R_2$ = 0.120 with 167 reflections, respectively, for which I > $3{\sigma}$(I). In the structure of $Ag_2Ca_5$-A, both $Ag^+$ ions and $Ca^{2+}$ ions lie on two crystal symmetrically independent threefold axis sites on the 6-rings; $2\;Ag^+$ ions are recessed 0.33 ${\;AA}$ from the (111) planes of three O(3) oxygens and 5 $Ca^{2+}$ ions lie on the nearly center of each 6-oxygen planes. In the structure of $Ag_2Cs_{10}-A,\;Cs^+$ ions lie on the 5 different crystallographic sites. 3 $Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry. 6 $Cs^+$ ions lie on the threefold axes of unit cell: $4\;Cs^+$ ions are found deep in the large cavity and 2 $Cs^+$ ions are found in the sodalite cavity. One $Cs^+$ ion is found in the large cavity near a 4-ring.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Effect of Whalakyuoleyng-dan plus Yinsamyangwui-tang on Anti-angionesis (활락효영단합인삼양위탕(活絡效靈丹合人蔘養胃湯)이 혈관신생(血管新生) 억제(抑制)에 미치는 영향(影響))

  • Ko, Ki-Wan;Park, Joon-Hyuk;Kang, Hee;Kim, Sung-Hoon;Yu, Young-Beob;Shim, Bum-Sang;Choi, Seung-Hoon;Ahn, Koo-Seok
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.7 no.1
    • /
    • pp.77-97
    • /
    • 2001
  • Anti-angiogenesis is one of therapies which have been high-lightened on the research of cancer treatment. Anti-angiogenesis means that new blood vessels are created from a existing capillary tube and it is a important process on metastasis and permeation when cancer is created or formed. Since angiogenesis have been under research, a complete recovery oriented treatment against cancer have been suggested blocking metastasis, delaying the growth of cancer cell, and blocking the supply of oxygen and nutritive substance through the web of blood vessels. Until now, there are several anti-angiogenesis, which have been known to the public, such as thalidomide, angiostatin, endostatin, 2-methoxyestradiol, TNP-470, and marimastat, etc. Additionally, 17 clinical testing projects about anti-angiogenesis are on the process in NCI(National Cancer Institute). Especially, TNP-470 showed effectiveness against cancer on clinical testing after finishing animal testing. Based on existing researches showing that Yinsamyangwui-tang is effective to strengthening body resistance and Whallakhyolenyng-dan effects cells on the inside of blood vessel because Whallakhyolenyng- dan restrains cell adhesion during the restraining period of a blood vessel, I tried to research the effect of Whalakhyolenyng-dan plus Yinsamyangwui-tang on angiogenesis. I made a conclusion putting into operation through using SK-Hep-1 (KCLB 30052), A549(KCLB 10185), AGS(KCLB 21739), and BCE(Bovine Capillary Endothelial Cell). Followings are the results of my experimental research: 1. According to the researching results of anti-cancer activation against cancer cell, Whallkhyoleyng dan plus Yinsamyangwui-tang decreased the number of cancer cells -- While injecting $600{\mu}g/ml$, injected groups decreased 3.1% more comparing with the contrastive group of SK-Hep-1, 49.7% more comparing with the contrastive group of A549, and 31.0% more comparing with the contrastive group of AGS. 2. According to the researching results of DNA composition effect between BCE and cancer cell, Whallakhyoleyng-dan plus Yinsamyangwui-tang reduced the rate of SK-Hep-1 synthesis inhibition by 59.1% at $600{\mu}g/ml$ intensity comparing with contrastive group; for A549, 72.6%; for AGS, 6.1%, for BCE, 28.9%. 3. According to the researching results about the effect of BCE cell to angiogenesis, angiogenesis was restrained at $400{\mu}g/ml$ intensity during 18 hours observation. 4. In the case of aortic ring assay, the half level of angiogenesis was reduced comparing with the contrastive group while injecting with $400{\mu}g/ml$ intensity; with $800{\mu}g/ml$, under 10% comparing with contrastive group; and with $1600{\mu}g/ml$, complete restrain. According to the above results, Whallakhyoleyng-dan plus Yinsamyangwui-tang was proved to have an anti-angiogenetic effects.

  • PDF