• Title/Summary/Keyword: Reduced ligands

Search Result 46, Processing Time 0.019 seconds

pH Dependence of CH3Hg+-binding Sites in Humic Acid: An X-ray Absorption Study (pH에 따른 부식유기산의 메틸수은 결합 리간드 변화: X-선 흡수분석)

  • Yoon, Soh-Joung;Bleam, William F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.122-132
    • /
    • 2011
  • Mercury accumulates in biota mainly as methylmercury. In nature, methylmercury shows high affinity to organic matter and $CH_3Hg^+$-organic matter complexation affects the mobility and bioavailabiity of methylmercury. In this study, we examined the methylmercury binding sites in an aquatic humic acid as affected by the pH condition using Hg $L_{III}$-edge extended X-ray absorption fine structure (EXAFS). We evaluated methylmercury binding humic ligands using methylmercury-thiol, methylmerury-carboxyl, and methylmercury-amine complexation models. When $CH_3Hg^+$-to-humic reduced sulfur ratio is 0.3, we found that most of $CH_3Hg^+$ binds to thiol ligands at pH 5 and 7. At pH 7, however, some carboxyl or amine ligand contribution is observed, unlike at pH 5 where $CH_3Hg^+$ almost exclusively binds to thiol ligands. The carboxyl or amine ligand contribution may indicate that some types of thiol ligands in the natural organic matter have relatively low complexation constants or acid dissociation constants compared to those of some carboxyl or amine ligands. Analysis results indicate that ~0.2 fraction of methylmercury binds to amine or carboxyl ligands and ~0.8 to thiol ligands at pH 7.

ZnO Nanoparticles with Hexagonal Cone, Hexagonal Plate, and Rod Shapes: Synthesis and Characterization

  • Kim, Sun-Young;Lee, In-Su;Yeon, Yun-Seon;Park, Seung-Min;Song, Jae-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1960-1964
    • /
    • 2008
  • The roles of coordinating ligands (TOPO, OA, HDA, and TDPA) for the synthesis of ZnO nanoparticles are investigated. Various shapes (hexagonal cone, hexagonal plate, and rod) and sizes (5-100 nm) of ZnO nanoparticles are prepared in relation to the coordinating ligands. The hexagonal shapes ($\leq$ 100 nm) are synthesized with TOPO and OA, while smaller size nanorods (5 ${\times}$ 30 nm) are with TOPO and TDPA. The relative intensities of two distinctive emission bands centered at 385 and 500 nm, which are related to the exciton and defect states, respectively, depend on the crystal qualities of ZnO nanoparticles affected by the coordinating ligands. The intense UV emissions with the reduced visible emissions are found in the monodisperse nanoparticles such as hexagonal cones and nanorods, suggesting that the monodispersity as well as the crystallinity is closely related to the coordinating ligands. The blue-shift of photoluminescence and absorption edge is observed in the nanorods, because the sizes of the nanorods are in the quantum confinement regime.

The Effect of Electron-withdrawing Group Functionalization on Antibacterial and Catalytic Activity of Palladium(II) Complexes

  • Feng, Zhi-Qiang;Yang, Xiao-Li;Ye, Yuan-Feng;Hao, Lin-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1121-1127
    • /
    • 2014
  • The design, synthesis, and structural characterization of two new palladium complexes based on Schiff base ligands is reported; $[Pd(L1)_2]$ (1) and $[Pd(L2)_2]$ (2), [HL1 = 2-((E)-(2,6-diethylphenylimino)methyl)-4,6-dibromophenol, L2 = (E)-N-benzylidene-2,6-diethylbenzenamine], which are obtained by functionalizing Schiff base ligands with or without electron-withdrawing groups. Both compounds are mononuclear structures. Comparisons are made to the compounds 1 and 2 to analyze and understand the effect of electron-withdrawing groups. Antibacterial activity studies indicate the electron-withdrawing groups on Schiff base ligands enhance antibacterial activity. Catalytic activity, however, is reduced due to the enhanced steric-hindrance of the electron-withdrawing groups. Electronic absorption and emission properties of HL1, L2, 1 and 2 are also reported.

Influence of Organic Ligands on Phytotoxicity of Paraquat (유기(有機)리간드가 Paraquat의 약해(藥害)에 미치는 영향)

  • Yang, Jae-E;Han, Dae-Sung;Shin, Yong-Keon
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.235-242
    • /
    • 1992
  • Organic ligands in the environments are expected to play an important role in regulating the biotoxicity and fate of pesticides. Influences of dissolved humic and fulvic acids on the phytotoxicity of Paraquat were investigated using a bioassay with hydroponically grown rye as indicator species. Levels of Paraquat in water culture media were ranged from 0 to $12_{{\mu}M}$ and those of humic or fulvic acid were 1.0mM as a soluble carbon. Media were prepared in a factorial combination with pHs of 4.5, 6.5 and 8.5, Standard curves of necrosis days, fresh weight, and growth rates, as Phytotoxicity Indices, versus Paraquat concentrations were employed to evaluate the effects of organic ligands on phytotoxicity of paraquat. Organic ligand itself had little effect on rye growth, but Paraquat showed a high degree of toxicity. Paraquat started to show an intensive injury to rye at $0.4{\sim}0.6{{\mu}M}$ and upper critical phytotoxic concentration was estimated to be 11.0${{\mu}M}$ In the presence of organic ligands, times required to cause necrosis due to Paraquat were delayed upto 40%. Fresh weights and growth rates were upto 20% higher in treatments of organic ligands plus Paraquat than that of Paraquat alone. Results demonstrated that complexation of organic ligand with Paraquat reduced the bioabailability of Paraquat to rye.

  • PDF

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

Efficient Bimodal Ring-opening Polymerization of ε-Caprolactone Catalyzed by Titanium Complexes with N-Alkoxy-β-ketoiminate Ligands

  • Cho, Min-Ho;Yoon, Jin-San;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2471-2476
    • /
    • 2007
  • A series of titanium complexes containing terdentate β-ketoiminate ligands were found to be efficient for the ring-opening polymerization of ε-caprolactone (ε-CL), producing poly(ε-caprolactone) (PCL) with bimodal distribution. Steric factors imposed by methyl substituents on the back bone of the alkoxy group affected significantly the polymerization rate and physical properties of the resulting PCL. Intra- and intermolecular transesterifications rather than disproportional rearrangements were responsible for the bimodal behavior and for the change in the molecular weight (Mw). Dilution with toluene reduced yield, and lowered polydispersity (PDI) and Mw of PCL, while the catalytic activities of the dimeric complex, [Ti(Oi-Pr)2(N-alkoxy-β- ketoiminate)]2 and Ti(Oi-Pr)4 were not sensitive to the added solvent. The dimeric complex showed living character, while other catalysts suffered from chain termination reactions.

Combination Doxorubicin and Interferon-α Therapy Stimulates Immunogenicity of Murine Pancreatic Cancer Panc02 Cells via Up-regulation of NKG2D ligands and MHC Class I

  • Wang, Wen-Jia;Qin, Si-Hao;Zhang, Ji-Wei;Jiang, Yue-Yao;Zhang, Jin-Nan;Zhao, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9667-9672
    • /
    • 2014
  • Background: Pancreatic adenocarcinoma is a malignant gastrointestinal cancer with significant morbidity and mortality. Despite severe side effects of chemotherapy, the use of immunotherapy combined with chemotherapy has emerged as a common clinical treatment. In this study, we investigated the efficacy of the combined doxorubicin and interferon-${\alpha}$ (IFN-${\alpha}$) therapy on murine pancreatic cancer Panc02 cells in vitro and in vivo and underlying mechanisms. Materials and Methods: A Panc02-bearing mouse model was established to determine whether doxorubicin and interferon-${\alpha}$ (IFN-${\alpha}$) could effectively inhibit tumor growth in vivo. Cytotoxicity of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs) was evaluated using a standard LDH release assay. To evaluate the relevance of NK cells and CD8 T cells to the combination therapy-mediated anti-tumor effects, they were depleted in tumor-bearing mice by injecting anti-asialo-GM-1 antibodies or anti-CD8 antibodies, respectively. Finally, the influence of doxorubicin+interferon-${\alpha}$ (IFN-${\alpha}$) on the ligands of NK and T cells was assessed by flow cytometry. Results: The combination therapy group demonstrated a significant inhibition of growth of Panc02 in vivo, resulting from activated cytotoxicity of NK cells and CTLs. Depleting CD8 T cells or NK cells reduced the anticancer effects mediated by immunochemotherapy. Furthermore, the doxorubicin+IFN-a treatment increased the expression of major histocompatibility complex class I (MHC I) and NKG2D ligands on Panc02 cells, suggesting that the combined therapy may be a potential strategy for enhancing immunogenicity of tumors. All these data indicate that the combination therapy using doxorubicin and interferon-${\alpha}$ (IFN-${\alpha}$) may be a potential strategy for treating pancreatic adenocarcinoma.

Synthesis and Characterization of Ir(H)(CO)(PEt3})22-C60)

  • Lee, Chang-Yeon;Lee, Gae-Hang;Kang, Hong-Kyu;Park, Bo-Keun;Park, Joon-T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1958-1962
    • /
    • 2007
  • The title complex, Ir(H)(CO)(PEt3)2(η 2-C60) (2), has been prepared by the reaction of excess C60 (4 equiv) with a tetrairidium complex Ir4(CO)8(PEt3)4 (1) in refluxing chlorobenzene in 40% yield as green crystals. Compound 2 has been characterized by cyclic voltammetry (CV), spectroscopic methods (mass, IR, 1H and 31P NMR), and a single crystal X-ray diffraction study. The molecular structure reveals that the iridium atom of 2 is coordinated by two axial ligands of a hydrogen atom and a carbonyl group, and three equatorial ligands of two phosphorus atoms and an η 2-C60 moiety. The CV study exhibits three reversible one-electron redox waves for the successive reductions of 2, together with additional four redox waves due to free C60 reductions, which was formed by decomposition of 2 in the reduced states. The three reversible redox waves of 2 are shifted to more negative potentials by ca. 270 mV compared to free C60, reflecting both metal-to-C60 π-back-donation and the electron-donating nature of the two phosphorus ligands.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.