• Title/Summary/Keyword: Reduced Salt

Search Result 573, Processing Time 0.027 seconds

Evaluation of salt level and rigor status on the physicochemical and textural properties of low-fat pork sausages added with sea tangle extract using rapidly chilled pre-rigor pork ham

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1445-1452
    • /
    • 2023
  • Objective: This study was performed to evaluate the quality characteristics of pork sausage (PS) with sea tangle extract (STE) and rapid chilled pre-rigor muscle (RCPM) for the development of reduced-salt low-fat sausage. Methods: Pre- and post-rigor pork ham muscles were prepared to process PSs. Positive control (reference, REF) using post-rigor muscle were manufactured at a regular-salt level of 1.5%. Fresh and rapid-chilled pre-rigor muscle (FPM and RCPM) were used to manufacture reduced-salt sausages with 0.8% salt. Reduced-salt PSs were prepared with four treatments: FT1 (FPM alone), FT2 (FPM with 5% STE), RT1 (RCPM alone), and RT2 (RCPM with 5% STE). The physicochemical and textural properties of the sausages with reduced-salt levels and RCPM combination were measured to determine if the characteristics of RCPM were similar to those with FPM. Results: The pH values of PS with FPM and RCPM were higher than those of REF with post-rigor muscle. Color values (L*, a*, b*) were not affected by different rigor-states and salt addition level. Textural properties of reduced-salt PSs were similar to those of REF due to the improved functionalities of pre-rigor muscle. RT2 had lower expressible moisture (%) than other treatments with post-rigor muscle and RCPM except for RT1. Conclusion: The addition of STE and RCPM to reduced-salt PS increased the water-holding capacity, which was lower than those of PS with STE using RCPM but similar to those of regular-salt sausage.

Effect of sea tangle extract on the quality characteristics of reduced-salt, low-fat sausages using pre-rigor muscle during refrigerated storage

  • Geon Ho Kim;Koo Bok Chin
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1738-1746
    • /
    • 2023
  • Objective: The aim of this study was to investigate quality characteristics of reduced-salt, low-fat pork sausage (PS) using pre-rigor muscle and sea tangle extract (STE) to reduce salt level of sausages during refrigerated storage. Methods: Pork ham was prepared with pre-rigor and post-rigor muscle from the local market. Sausages using post-rigor muscle were manufactured with the 1.5% of salt content, and samples with pre-rigor muscle were processed by different salt concentrations (0.8%). Accordingly, PSs were prepared in 4 treatments (REF, PS with 1.5% of salt using post-rigor muscle; CTL, PS with 0.8% of salt using pre-rigor muscle; TRT1, PS with 0.8% of salt and 5% of STE using pre-rigor muscle; TRT2, PS with 0.8% of salt and 10% of STE using pre-rigor muscle). For the evaluation of quality characteristics and shelf-life of reduced-salt PS, pH and color values, cooking loss (%), expressible moisture (%), textural properties, lipid oxidation (thiobarbituric reactive substances), protein denaturation (volatile basic nitrogen), and microbiological analysis (total plate counts and Enterobacteriaceae counts) were determined. Results: The pH and temperature of pre-rigor raw pork ham were higher than those of post-rigor pork ham. Hardness of TRT2 was higher than that of REF or CTL. TRT2 had higher gumminess and chewiness than CTL. TRT1 and TRT2 had lower volatile basic nitrogen than CTL. Total plate counts of TRT2 were lower than those of CTL. Expressible moisture values of TRT1 and TRT2 were similar to those of REF. The addition of STE into PS improved functional properties and shelf-life of PS. Conclusion: Reduced-salt PS containing pre-rigor muscle and STE had similar functional properties to those of regular-salt ones, while containing approximately 47% less salt compared to regular-salt level.

Physicochemical, Textural, and Sensory Properties of Low-fat/reduced-salt Sausages as Affected by Salt Levels and Different Type and Level of Milk Proteins

  • Lee, Hong-Chul;Chin, Koo-Bok
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • This study was performed to develop low-fat/reduced-salt sausages (LFRSS; <3% fat and <1.5% salt) containing milk protein (whey protein concentrate, WPC, or sodium caseinate, SC) that showed the similar cooking yield and textural characteristics to those of regular-fat/salt sausage control (RFC; 20% fat and 1.5% salt) or low-fat sausage control (LFC; <3% fat and 1.5% salt). Low-fat sausages (LFS) were formulated with a 2.5% fat replacer (konjac flour:carrageenan:soy protein isolate=1:1:3) and various salt levels (0.75, 1.0, 1.25, and 1.5%). LFS had differences in color and expressible moisture (EM, %) values as compared to those of RFC. A minimum salt level of 1% and addition of nonmeat proteins were required to manufacture LFRSS that have similar characteristics to those of RFC. However, LFS with 2% milk proteins reduced the hardness and gumminess as compared to LFC. These results indicated that 1% milk protein in combined with 1% salt was a proper level for manufacturing of LFRSS.

Effects of different frozen temperatures of pork sausage batter on quality characteristics of reduced-salt sausages using pre-rigor muscle

  • Kim, Geon Ho;Chin, Koo Bok
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1270-1278
    • /
    • 2022
  • Objective: The objective of this study was to evaluate quality characteristics of reduced-salt pork sausage (PS) using pre-rigor muscle compared to those of regular-salt PS. In addition, effects of freezing on sausage batter with different temperatures (-30℃ vs -70℃) on quality characteristics of both sausage batter and cooked sausages during frozen storage were observed. Methods: Pre-rigor and post-rigor pork hams were used to manufacture low-fat sausages. Sausages using post-rigor (Post) muscle were manufactured at a salt level of 1.5%, whereas those with pre-rigor (Pre) muscle were processed at salt level of 1.0%. After these muscles were made at two salt levels (1.5% salt, Post-rigor; 1.0% salt, Pre-rigor), Sausage batters were stored at two frozen temperatures (-30℃ vs -70℃). During storage for 12 wks, they were measured for physicochemical and textural properties every 4 wks up to 12 wks. Results: pH values and temperatures of sausage batter of pre-rigor muscle were higher than those of post-rigor muscle regardless of the frozen temperature. The lightness and yellowness values of batter at the initial storage were the highest during storage. For PS, there were no differences in most parameters measured among all treatments. However, expressible moisture values (%) of Pre-30 and Pre-70 were lower than those of Post-30 (p<0.05). Conclusion: Regardless of frozen temperature during storage, quality characteristics of pre-rigor PS with salt level of 1.0% salt were similar to those of post-rigor PS with salt level of 1.5%. By using the pre-rigor muscle, salt content could be reduced by one third of the regular-salt level (1.5%) of post-rigor muscle.

Effects of Glasswort (Salicornia herbacea L.) Hydrates on Quality Characteristics of Reduced-salt, Reduced-fat Frankfurters

  • Lim, Yun-Bin;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jang, Sung-Jin;Lee, Choong-Hee;He, Fu-Yi;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.783-792
    • /
    • 2015
  • Abstract This study evaluated the effects of adding glasswort hydrate containing non-meat ingredient (GM, carboxy methyl cellulose; GC, carrageenan; GI, isolated soy protein; GS, sodium caseinate) on the quality characteristics of reduced-salt, reduced-fat frankfurters. The pH and color evaluation showed significant differences, depending on the type of glasswort hydrate added (p<0.05). In the raw batters and cooked frankfurters, the addition of glasswort hydrate decreased the redness and increased the yellowness in comparison with frankfurters without glasswort hydrate. The reduction in salt and fat content significantly increased cooking loss and decreased hardness, tenderness and juiciness (p<0.05). Glasswort hydrate containing non-meat ingredient improved cooking loss, water holding capacity, emulsion stability, hardness, and viscosity of reduced-salt, reduced-fat frankfurters. The GM treatment had the highest myofibiliar protein solubility among all treatments, which was associated with emulsion stability and viscosity. The GC treatment had higher values for all texture parameters than the control. In the sensory evaluation, the addition of glasswort hydrate with non-meat ingredient improved tenderness and juiciness of reduced-salt, reduced-fat frankfurters. GM, GC, and GI treatments improved not only the physicochemical properties but also the sensory characteristics of reduced-salt, reduced-fat frankfurters. The results indicated that the use of glasswort hydrate containing non-meat ingredient was improved the quality characteristics of reduced-salt, reduced-fat frankfurters.

Effects of Edible Seaweed on Physicochemical and Sensory Characteristics of Reduced-salt Frankfurters

  • Choi, Yun-Sang;Kum, Jun-Seok;Jeon, Ki-Hong;Park, Jong-Dae;Choi, Hyun-Wook;Hwang, Ko-Eun;Jeong, Tae-Jun;Kim, Young-Boong;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.748-756
    • /
    • 2015
  • The effects of sea tangle, sea mustard, hijiki, and glasswort were investigated based on the proximate composition, salinity, cooking loss, emulsion stability, pH, color, texture profile analysis, apparent viscosity, and sensory characteristics of reduced-salt (NaCl) meat batter and frankfurters. The moisture content, salinity, lightness of the meat batter and frankfurter, hardness, gumminess, and chewiness of the reduced-salt frankfurters with sea weeds were lower than the control without seaweed (p<0.05). The protein content, springiness, and cohesiveness of the reduced-salt frankfurters were not significantly different among the treatments (p>0.05). The moisture content, salinity, cooking loss, lightness, redness, hardness, gumminess, and chewiness of treatments with sea tangle and with sea mustard were lower than the control (p<0.05). Among the sensory traits, color was highest in the control (p<0.05). The flavor was also highest in the control. The treatments with sea tangle and with sea mustard samples had high tenderness, juiciness, and overall acceptability scores similar to the control (p<0.05). The results of this study show that the combination of low-salt and seaweed in the formulation successfully improved reduced-salt frankfurters, improving sensory characteristics to levels similar to the regular salt control (1.5%).

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

Effects of Red and Green Glassworts (Salicornia herbacea L.) on Physicochemical and Textural Properties of Reduced-salt Cooked Sausages

  • Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Yeo, In-Jun;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.378-386
    • /
    • 2014
  • This study was conducted to determine the effects of red and green glasswort on the physicochemical and textural properties of reduced-salt cooked sausages. The control was formulated with 1.5% NaCl; then, three reduced-salt treatments were prepared, with 0.75% NaCl (RS), 0.75% NaCl+1.0% red glasswort (RSR) and 0.75% NaCl+1.0% green glasswort (RSG), respectively. The addition of glasswort within the added amount of 1% had no influence on the pH value of the reduced-salt cooked sausages, regardless of the glasswort type. In terms of color, RSG treatment conveyed a higher hue angle value than the RSR treatment (p<0.05). Increases in the protein solubility (total and myofibrillar proteins) and apparent viscosity of reduced-salt meat batter that were due to the addition of glasswort were observed; however, there were no differences according to the type of glasswort (p>0.05). Furthermore, the addition of glasswort, regardless of its type, resulted in decreased cooking loss, and increased emulsion stability. As a result, reduced-salt cooked sausages formulated with either red or green glasswort demonstrated similar textural properties to those of the control. In conclusion, the type of glasswort within an added amount of 1% had no influence on the physicochemical and textural properties of reduced-salt cooked sausages, except for the color characteristics. In terms of color alteration by the addition of glasswort, the red glasswort, which in comparison with the green glasswort could minimize the color changes of reduced-salt cooked sausages, might be an effective source for manufacturing meat products.

Physicochemical properties of reduced-salt cured pork loin as affected by different freezing temperature and storage periods

  • Kim, Haeun;Chin, Koo Bok
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.494-502
    • /
    • 2022
  • Objective: The objective of this study was to evaluate functional properties of reduced-salt pork meat products made of pre-rigor pork loin treated by different freezing temperatures (-30℃ and -70℃) during storage. Methods: Pre-rigor cured pork loin with 1.0% added salt was compared to post-rigor muscle added with 1.5% salt for pH, color (L*, a*, b*), cooking loss (CL), expressible moisture, warner-Bratzler shear value, thiobarbituric acid reactive substances (TBARS), and volatile basic nitrogen (VBN). Results: Pre-rigor cured pork loins had higher pH and temperature than post-rigor ones as raw meat (p<0.05). pH values were higher for pre-rigor pork loins than those of post-rigor pork loins (p<0.05). Color values did not different among treatments (p>0.05). No color differences were observed during storage period after cooking (p>0.05). The CL (%) of pre-rigor cured pork loins was the lowest when frozen at -70℃. The TBARS and VBN increased from 8 weeks of storage (p<0.05), but no further changed thereafter (p>0.05). Pre-rigor cured pork loins added with 1.0% salt showed similar characteristics to post-rigor pork loins added with 1.5% salt. Conclusion: Cured pork loins could be produced using pre-rigor muscle added with 1/3 of the original salt level (1.5%) and could be stored for up to 4 wks of frozen storage, regardless of a frozen temperature of -30℃ or -70℃ without detrimental effects.

Quality and Storage Characteristics of Chicken Patties with Added Shell Calcium and Transglutaminase to Reduce Sodium Intake (나트륨 섭취 경감을 위해 패각칼슘과 트랜스글루타미나아제를 첨가한 닭고기 패티의 품질 및 저장 특성)

  • Youngho Lim;Gyutae Park;Kisu Ahn;Jungseok Choi
    • Korean Journal of Poultry Science
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • To reduce salt content and enhance calcium in chicken patty, shell calcium powder (SCP) was added, and transglutaminase (TG) was included to improve its properties. Five different treatments were prepared to assess the effects: CON (2% salt), T1 (0.75% salt + 0.2% SCP), T2 (0.75% salt + 0.2% SCP + 0.2% TG), T3 (0.5% salt + 0.4% SCP), and T4 (0.5% salt + 0.4% SCP + 0.2% TG). Reducing salt led to decreased ash content and increased cooking loss. The addition of SCP and TG raised pH levels. Meat color remained consistent with different salt, SCP, and TG levels. However, when salt was reduced to 0.5% and SCP was added at 0.4% without TG, the patty's hardness and chewiness decreased. Sensory evaluations showed reduced juiciness when salt was reduced to 0.5% and SCP was added at 0.4%, but no significant differences were observed in overall acceptability. Salt had no impact on TBARS results, but salt reduction to below 0.5% increased susceptibility to microbial contamination. In summary, reducing salt and adding SCP had minimal sensory impact, but when salt is reduced to 0.5% or lower, consider adding TG. Also, when decreasing salt, additional preservatives should be considered to address potential microbial contamination during manufacturing.