• Title/Summary/Keyword: Reduced Order Modeling

Search Result 194, Processing Time 0.027 seconds

A Study on the Modeling and Analysis of Cell Delay Variation Compensation using Variable Timestamp Method in the Satellite TDMA Transmission (위성 TDMA 전송에서 가변타임스탬프 방식의 셀 지연변이 보상의 모델과 해석)

  • 김정호;박진양
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.11
    • /
    • pp.1395-1406
    • /
    • 2001
  • In order to cover a widespread service range, terrestrial/satellite-mixed network is being combined with terrestrial ATM network. This dissertation analyzes and investigates several previously existent CDV compensation methods in order to compensate CDV arising from interfacing satellite TDMA and ATM. Specifically to supplement the problems of timestamp and cell number counting methods, new Variable Timestamp method for CDV compensation is proposed. To evaluate the proposed method, MMPP(Markov Modulated Poisson Process), which can express VBR service very well, is selected as a cell input traffic model of terrestrial transmitting earth station. After several simulation, it is also confirmed that CDV compensation capability for VBR services is very superior to the cell number counting method. In this case, as the timestamp number Nts increases, CDV compensation capability increases, and the CDV distribution length is reduced.

  • PDF

Track-following Control of an Optical Pick-up Actuator Using PZT (PZT를 이용한 광 정보저장기기용 액추에이터의 트랙 추적제어)

  • 정동하;박태욱;박노철;양현석;이우철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.385-393
    • /
    • 2004
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(voice coil motor) for coarse motion, for an SFF ODD(small form factor optical disk drive), in order to achieve fast access speed and precise track-following control. Over the past few decades there have been a lot of researches related to the VCM and dual-stage actuator. In this paper, we focus our attention on the design and control of the PZT actuator. Due to the dual cantilever structure. the PZT actuator can generate precise translational tracking motion at its tip to which an optical pickup is attached. and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing it with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

Sliding mode control of small form factor optical pick-up actuator using PZT (PZT를 이용한 초소형 광 픽업 엑츄에이터의 슬라이딩 모드 제어)

  • Lee, Woo-Chul;Jung, Dong-Ha;Park, Tae-Wook;Park, No-Cheol;Yang, Hyun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.424-429
    • /
    • 2003
  • This paper proposes a swing-arm type dual-stage actuator, which consists of a PZT actuator for fine motion and a VCM(Voice Coil Motor) for coarse motion, for SFF ODD(Small Form Factor Optical Disk Drive), in order to achieve fast access speed and precise track following control. We focus our attention on the design and control of the PZT actuator, because there have been a lot of previous researches related to the VCM and dual-stage actuators. Due to the dual cantilever structure, the PZT actuator can generate precise translational tracking motion at its tip where optical pickup is attached at, and the effect of hysteric behavior of the PZT element is reduced. The dynamic model of the PZT actuator is derived by using the Hamilton's principle, and verified by comparing with the experimental frequency response. The sliding mode control is designed in order to be robust against modeling uncertainties. Simulations and experimental results confirm the effectiveness of the suggested control scheme.

  • PDF

Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay (전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위)

  • Yang, Hyo-Jin;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • In case of more than 50km baseline length, the correlation between receivers is reduced. Therefore, there are still some rooms for improvement of its positional accuracy. In this paper, the stochastic modeling of the ionospheric delay is applied and its effects are analyzed. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the medium or long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. The ionospheric delay is stochastically modeled by well-known 1st order Gauss-Markov process. And the correlation time and variation of 1st order Gauss-Markov process are calculated. This paper gives analyzed results of developed algorithm compared with commercial software and Bernese.

Application of high voltage pulse for reduction of membrane fouling in membrane bio-reactor and kinetic approach to fouling rate reduction (막결합형 생물반응기(Membrane Bio-Reactor)의 막 오염 저감을 위한 고전압 펄스의 적용과 막 오염 저감 속도론적 해석)

  • Kim, Kyeong-Rae;Kim, Wan-Kyu;Chang, In-Soung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.183-190
    • /
    • 2020
  • Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

The Trend of System Level Thermal Management Technology Development for Aero-Vehicles (항공기 시스템 레벨 열관리 기술개발 동향)

  • Kim, Youngjin;Son, Changmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Modern aircraft is facing the increase of power demands and thermal challenges. In accordance with the application of more electric technology and advanced mission requirement, aircraft system requires increase of power generation and it cause increase of internal heat generation. Simultaneously, restrictions have significantly been imposed to the thermal management system. Modern aircraft must maintain low radar observability and infra-red signature. In addition, new composite aircraft skins have reduced the amount of heat that can be rejected to the environment. The combination of these characteristics has increased the challenges faced by thermal management. In order to mitigate the thermal challenges, the concept of system level thermal management should be applied and new modeling and simulation tools need to be developed. To develop and utilize system level thermal management technology, three key points are considered. Firstly, the performance changes of subsystems and components must be assessed at an integrated thermal system. It is because that each subsystem and component interacts with other subsystems or components and it can directly effects on overall system performance. Secondly, system level thermal management requirements and solutions must be evaluated early in conceptual design process as vehicle and propulsion system configuration decisions are being made. Finally, new component level thermal management technologies must focus on reducing heat generation and increasing the availability of heat sinks.

Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams

  • Abdelhak Mesbah;Zakaria Belabed;Khaled Amara;Abdelouahed Tounsi;Abdelmoumen A. Bousahla;Fouad Bourada
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.291-309
    • /
    • 2023
  • This paper addresses the finite element modeling of functionally graded porous (FGP) beams for free vibration and buckling behaviour cases. The formulated finite element is based on simple and efficient higher order shear deformation theory. The key feature of this formulation is that it deals with Euler-Bernoulli beam theory with only three unknowns without requiring any shear correction factor. In fact, the presented two-noded beam element has three degrees of freedom per node, and the discrete model guarantees the interelement continuity by using both C0 and C1 continuities for the displacement field and its first derivative shape functions, respectively. The weak form of the governing equations is obtained from the Hamilton principle of FGP beams to generate the elementary stiffness, geometric, and mass matrices. By deploying the isoparametric coordinate system, the derived elementary matrices are computed using the Gauss quadrature rule. To overcome the shear-locking phenomenon, the reduced integration technique is used for the shear strain energy. Furthermore, the effect of porosity distribution patterns on the free vibration and buckling behaviours of porous functionally graded beams in various parameters is investigated. The obtained results extend and improve those predicted previously by alternative existing theories, in which significant parameters such as material distribution, geometrical configuration, boundary conditions, and porosity distributions are considered and discussed in detailed numerical comparisons. Determining the impacts of these parameters on natural frequencies and critical buckling loads play an essential role in the manufacturing process of such materials and their related mechanical modeling in aerospace, nuclear, civil, and other structures.

Assessing the Unit Load Reduction Equation of Drainage Outlet Raising Management in Paddy Fields (논 물꼬관리 기법 적용에 따른 원단위 삭감부하량 산정식 평가)

  • Kim, Dong-Hyeon;Oh, Heung-Keun;Jang, Taeil;Ham, Jong-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • The DOR (Drainage outlet raising) in the paddy field has been suggested as one of the most important best management practices for the TMDL (Total maximum daily load) management in the technical guidelines by the NIER (National institute of environmental research). However, this method is underestimated and is not well adopted by local governments for the TMDL. The purpose of this study is to evaluate the unit load reduction equation according to the application of DOR in order to expand this equation. The original equation in the guideline was derived using the HSPF (Hydrological Simulation Program-Fortran) model for 1 year in Changnyeong. We analyzed the reduction effect of the original equation application by collecting additional long-term monitoring data from the Buan, Icheon, Iksan, and Jeonju. When comparing the reduction loads between the original equation and monitoring results, the evaluation results of the original equation were 11% of the monitoring analysis results, which was underestimated. This means that the original equation needs to be improved. For assessing the equation, the HSPF Paddy-RCH model was established according to the NI ER guideline and evaluated for applicability. The performance results of the model showed a reasonable range by the statistical criteria. Modified equations 1 and 2 were proposed based on the monitoring and modeling results. Modified equation 1 was the method of modifying the original equation's main factors, and modified equation 2 was the method of applying the non-point pollution reduction efficiency according to the rainfall class using the long-term modeling results. At the level of 58.6~64.6% of monitoring data, the difference between them could be further reduced compared to the original equation. The suggested approach will be more reasonable and practicable for decision-makers and will contribute to the TMDL management plans.