• Title/Summary/Keyword: Reduced Glutathione

Search Result 730, Processing Time 0.031 seconds

백서에서 Allopurin이에 대한 Paraquat 독성의 감소효과

  • 이병래;고광삼
    • Toxicological Research
    • /
    • v.9 no.1
    • /
    • pp.23-33
    • /
    • 1993
  • In the present study, the effects of allopurinol on paraquat toxicity were investigated in paraquat-treated rats. The surivals of paraquat-treated rats were increased by allopurinol treatment. The contents of glutathione in liver and kidney were significantly decreased by paraquat, but restored by allopurinol. The activity of xanthine oxidase was significantly reduced but NADH dehydrogenase was not changed by allopurinol teatment. The activities of catalase, SOD and glutathione peroxidase in liver were significantly decreased by paraquat but catalase was restored by allopurinol treatment.

  • PDF

Antioxidant enzyme acitivity of flavonol quercetin in the presence of different anticxidants.

  • Hue, Jeong-Sim;Kim, An-Keun
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.159.3-160
    • /
    • 2003
  • It has been known that quercetin is one of bioflavonid compounds and has anti-tumor effect by suppressing tumor growth in vitro and in vivo, including multiple biological effects by antioxidant and effective anti-inflammatory agent. The present study investigated whether quercetin can enhance antioxidant enzyme activity (glutathione proxidase: GPX, superoxide dismutase: SOD, catalase: CAT) and regulate the intracellular reactive oxygen intermediate levels on the B16F10 murine melanoma cells in the presensece of vitamin E, L-ascorbic acid (vitamin C) and reduced glutathione (GSH). (omitted)

  • PDF

Protective Effects of Chlorogenic Acid against Experimental Reflux Esophagitis in Rats

  • Kang, Jung-Woo;Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.420-425
    • /
    • 2014
  • Esophageal reflux of gastric contents causes esophageal mucosal damage and inflammation. Recent studies show that oxygen-derived free radicals mediate mucosal damage in reflux esophagitis (RE). Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is one of the most abundant polyphenols in the human diet and possesses anti-inflammatory, antibacterial and anti-oxidant activities. In this context, we investigated the effects of CGA against experimental RE in rats. RE was produced by ligating the transitional region between the forestomach and the glandular portion and covering the duodenum near the pylorus ring with a small piece of catheter. CGA (10, 30 and 100 mg/kg) and omeprazole (positive control, 10 mg/kg) were administered orally 48 h after the RE operation for 12 days. CGA reduced the severity of esophageal lesions, and this beneficial effect was confirmed by histopathological observations. CGA reduced esophageal lipid peroxidation and increased the reduced glutathione/oxidized glutathione ratio. CGA attenuated increases in the serum level of tumor necrosis factor-${\alpha}$, and expressions of inducible nitric oxide synthase and cyclooxygenase-2 protein. CGA alleviates RE-induced mucosal injury, and this protection is associated with reduced oxidative stress and the anti-inflammatory properties of CGA.

Effects of 4-tert-octylphenol on glutathione-related antioxidant status in olive flounder Paralichthys olivaceus

  • Jee, Jung-Hoon;Keum, Yoo-Hwa;Bae, Jun Sung;Lee, Chae Won;Yang, Chan Yeong;Choi, Sang-Hoon;Kang, Ju-Chan;Park, Kwan Ha
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Effects on glutathione-related antioxidant parameters were examined after a chronic exposure of olive flounder, Paralichthys olivaceus to dietary 4-tert-octylphenol (4-tert-OP). Fish were fed diets containing 4-tert-OP at 0, 1, 5 and 10 mg/kg diet for 6 weeks. Antioxidant parameters examined were reduced glutathione (GSH) contents and enzyme activities of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GPx) in tissue homogenates of the liver, kidney and gill. It was observed that all parameters examined increased although there were some differences in dose responses and temporal patterns in the increase. GSH contents increased after exposure to 4-tert-OP in the three organs examined. However, the GSH increase was evident only after 4 weeks in the liver whereas it was elevated after 2 weeks in the kidney and gill. GR activity exhibited a significant increase in response to 4-tert-OP at 1 mg/kg in all three organs, however, its activity returned to control levels when exposed to 5 and 10 mg/kg. Hepatic GST activity showed an earlier increase at week 2 in contrast to the kidney and gill where they increased after 4 weeks of 4-tert-OP exposure. Temporal patterns in GPx activity changes to 4-tert-OP exposure were dissimilar among the organs: hepatic activity increased from week 2 through week 6; renal activity increased transiently at week 2; gill levels were higher through weeks 4 - 6. The results suggest that elevation of several GSH-related antioxidant parameters can be considered as evaluation criteria for 4-tert-OP-induced oxidative stress in a fish.

Protective Effect of Oenanthe javanica Extract on Acetaminophen-induced Hepatotoxicity in Rats (Acetaminophen으로 유도한 쥐의 간 독성에 대한 미나리(Oenanthe javanica) 추출액의 간 보호 작용)

  • Park, Jong-Cheol;Kim, Jong-Yeon;Lee, Youn-Ju;Lee, Ji-Seon;Kim, Bo-Geum;Lee, Seung-Ho;Nam, Doo-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.316-321
    • /
    • 2008
  • The hepatoprotection by the methanol extract of Oenanthe javanica DC (water dropwort) (OJME) was investigated in Sprague Dawley rats with inducing liver damage by acetaminophen. After OJME administration for 1 week, the increase of hepatic lipid peroxide level by acetaminophen-induced hepatotoxicity was significantly reduced. In case of phase I microsomal enzyme systems including cytochrome P-450, aminopyrine N-demethylase and aniline hydroxylase, any significant differences between in control and in OJME-pretreated group was observed after acetaminophen treatment. However, the pretreatment of OJME maintained the hepatic glutathione level and the activity of liver cytosolic glutathione S-transferase, which was significantly decreased by the acetaminophen intoxication. Among the glutathione-generating system, glutathione reductase was more responsible for its biosynthesis rather than ${\gamma}-glutamylcystein$ synthetase. OJME itself showed the strong inhibition activity on DPPH radical generation. In conclusion, OJME administration maintains the liver glutathione pool and hepatic glutathione S-transferase activity, in addition with its high anti-oxidative capability, to show hepatoprotective effect from acetaminophen intoxication.

Effects of nitric oxide on ascorbate-glutathione cycle enzymes activities in chinese cabbage leaves under paraquat-induced oxidative stress (Paraquat 유도 산화스트레스하의 배추 잎에서 Ascorbate-Glutathione 회로 효소의 활성도에 대한 산화질소 (Nitric oxide)의 효과)

  • Na, Ho-Gyun;Jin, Chang-Duck
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • Pretreatment of chinese cabbage leaves with $100{\mu}M$ sodium nitroprusside (SNP), a nitric oxide (NO) donor, effectively improved their tolerance to subsequent $2{\mu}M$ paraquat (PQ)-induced oxidative damage. The fresh weight, and chlorophyll and protein contents in primary leaves treated with PQ alone were noticeably reduced over 24 h light incubation. However, these leaf injury symptoms were significantly alleviated with $100{\mu}M$ SNP pretreatment for 3 h prior to PQ exposure. In additions, the increase of the contents of malondialdehyde (MDA) and $H_2O_2$ due to PQ exposure were significantly inhibited by SNP pretreatment. Together with the protective effects of SNP against PQ toxicity in leaves, the changes of ascorbate-glutathione cycle enzymes activities were examined. In the PQ alone treatment, the activities of APX, DHAR, and GR after 6 h incubation were rapidly reduced and showed 19%, 50% and 39% respectively, compared with those of the control. However, the decreases in these enzyme activities were significantly inhibited by SNP pretreatment. As a result, their activities were higher than those of PQ alone treatment by 5 times, 2 times, and 1.5 times, respectively, at 6 h incubation. Thereafter, these enzymes decrease their activities gradually showing high levels than those of PQ alone. Based on the above results, it can be assumed that the activation of ascorbate-glutathione cycle by SNP pretreatment in chinese cabbage leaves exposed to PQ can prevent $H_2O_2$ accumulation, thereby leading to protection against PQ-induced oxidative stress. Also, these results indicate that NO acts as an protectant against PQ stress in the leaves of chinese cabbage.

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Thioltransferase (Glutaredoxin) from Chinese Cabbage: Purification and Properties

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.377-383
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, was purified from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis) by a combination of ion-exchange chromatography and gel filtration. Its purity was confirmed by SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 12,000 which is comparable with those of most known thioltransferases. The enzyme utilizes 2-hydroxyethyl disulfide, S-sulfocysteine, ${\alpha}-chymotrypsin$, insulin, and trypsin as substrates in the presence of reduced glutathione. The enzyme has Km values of 0.03-0.97 mM for these substrates. It appeared to contain dehydroascorbate reductase activity. The pH optimum of the enzyme was 8.5, when 2-hydroxyethyl disulfide was used as a substrate. It was greatly activated by reduced glutathione. Its activity was not significantly lost when stored at high temperature, indicating its thermostable character. It may play an important role in thiol-disulfide exchange in plant cells.

  • PDF

Effect of S-Adenosylmethionine on Hepatic Injury from Sequential Cold and Warm Ischemia

  • Lee, Yu-Bum;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.495-500
    • /
    • 2000
  • We investigated whether S-adenosylmethionine (SAM) treatment improved ischemic injury using perfused rat liver after sequential periods of 24 h cold and 20 min re-warming ischemia. SAM (100 $\mu\textrm{mol/L}$) was added to University of Wisconsin (UW) solution and Ringers lactate solution. After cold and sequential warm ischemia, releases of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP) markedly increased during repefusion. The increase in PNP was significantly reduced by SAM treatment. While the concentration of reduced glutathione (GSH) in ischemic livers significantly decreased, the concentration of glutathione disulfide (GSSG) increased. This decrease in GSH and increase in GSSG were suppressed by SAM treatment. Lipid peroxidation was elevated in cold and warm ischemic and reperfused livers, but this elevation was also prevented by SAM treatment. Hepatic ATP levels were decreased in the ischemic and reperfused livers to 42% of the control levels. However, treatment with SAM resulted in significantly higher ATP levels and preserved the concentration of AMP in ischemic livers. Our findings suggest that SAM prevents oxidative stress and lipid peroxidation and helps preserve hepatic energy metabolism.

  • PDF

Enact of Glutathione(GSH/GSSG) Contents of Fermented Ginseng on the ${\gamma}$-irradiated Liver of Mice (감마선을 조사한 생쥐 간에서 발효인삼이 Glutathione 함량에 미치는 영향)

  • Ko, In-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.29-34
    • /
    • 2006
  • Purpose: The radioprotective effects of white and fermented ginseng on liver damage induced by $^{60}Co\;{\gamma}$-ray were investigated. Materials and Methods: To one group of ICR male mice were given white(150 mg/kg/day for 7 days, orally) and fermented ginseng(150 mg/kg/day for 7 days, orally) before $^{60}Co\;{\gamma}$-ray irradiation. To another group were irradiated by 5 Gy(1.01 Gy/min) dose of $^{60}Co\;{\gamma}$-ray. Contrast group were given with saline(0.1 mL). The levels of reduced(GSH) and oxidized(GSSG) glutathione in liver tissue were measured. Results: In the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group, the GSH levels were significantly increased, but the GSSG levels were significantly decreased. The ratio of GSSG/total GSH was significantly decreased in the fermented(150 mg/kg) and white ginseng(150 mg/kg) groups than irradiation group. Conclusion: In the fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups the GSH levels were significantly increased. The radioprotective effects of fermented(150 mg/kg) groups than white ginseng(150 mg/kg) groups were increased.

  • PDF