• Title/Summary/Keyword: Reduce Integration

Search Result 547, Processing Time 0.027 seconds

Determination of a Homogeneous Segment for Short-term Traffic Count Efficiency Using a Statistical Approach (통계적인 기법을 활용한 동질성구간에 따른 교통량 수시조사 효율화 연구)

  • Jung, YooSeok;Oh, JuSam
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.135-141
    • /
    • 2015
  • PURPOSES: This study has been conducted to determine a homogeneous segment and integration to improve the efficiency of short-term traffic count. We have also attempted to reduce the traffic monitoring budget. METHODS: Based on the statistical approach, a homogeneous segment in the same road section is determined. Statistical analysis using t-test, mean difference, and correlation coefficient are carried out for 10-year-long (2004-2013) short-term count traffic data and the MAPE of fresh data (2014) are evaluated. The correlation coefficient represents a trend in traffic count, while the mean difference and t-score represent an average traffic count. RESULTS : The statistical analysis suggests that the number of target segments varies with the criteria. The correlation coefficient of more than 30% of the adjacent segment is higher than 0.8. A mean difference of 36.2% and t-score of 19.5% for adjacent segments are below 20% and 2.8, respectively. According to the effectiveness analysis, the integration criteria of the mean difference have a higher effect as compared to the t-score criteria. Thus, the mean difference represents a traffic volume similarity. CONCLUSIONS : The integration of 47 road segments from 882 adjacent road segments indicate 8.87% of MAPE, which is within an acceptable range. It can reduce the traffic monitoring budget and increase the count to improve an accuracy of traffic volume estimation.

Variable Time Step Simulation and Analysis of Hydraulic Control Systems using Transmission Line Modeling (전달관로 모델링을 이용한 유압제어 시스템의 가변 시간스텝 시뮬레이션 및 해석)

  • Hwang, Un-Gyu;Jo, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.843-850
    • /
    • 2002
  • This paper presents a simulation method using the transmission line modeling to reduce simulation runtime of hydraulic control systems. This method is based on separating the system components each other using the transmission line elements prior to simulation, which leads to divide the simulated system into several subsystems suitable for an even more efficient integration. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. By applying variable integration timestep to parallel hydraulic circuits via parallel processing, it is shown that simulation run-time can be reduced significantly compared with that of Runge Kutta method.

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

A Study on the Integration of Commercial Codes for Structural Optimal Design (최적설계를 위한 상용프로그램의 통합에 대한 연구)

  • 신정호;곽병만;곽기성;한영근
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.209-217
    • /
    • 1999
  • In this paper, an integrated S/W system from CAD to optimal design has been suggested and an application to a precision machine tool structure shown. The integrated system is so designed to reduce manual interfacing effort. An object-oriented programming language is used for combining 3-D CAD program, FEM and optimal design tools. In this system parametric modelling technique is applied and users can get the optimum design iteratively without much user intervention. The CAD model is automatically updated when the design parameters are transferred back to the CAD program. Not only design time can be dramatically reduced but unnecessary operation errors avoided by the integration.

  • PDF

Linear system analysis via wavelet-based pole assignment (웨이블릿 기반 극점 배치 기법에 의한 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1434-1439
    • /
    • 2008
  • Numerical methods for solving the state feedback control problem of linear time invariant system are presented in this paper. The methods are based on Haar wavelet approximation. The properties of Haar wavelet are first presented. The operational matrix of integration and its inverse matrix are then utilized to reduce the state feedback control problem to the solution of algebraic matrix equations. The proposed methods reduce the computation time remarkably. Finally a numerical example is illustrated to demonstrate the validity and applicability of the proposed methods.

An Interworking Scheme for Fast Handoff between 3G and WiBro Networks (3G-WiBro 고속 핸드오프를 위한 연동방안)

  • Kim Seokhoon;Kim Cheolhong;Chang Hongsung;Ryoo Intae;Park Sung-Soo;Lee Donghauk;Chung Wonsuk;Cho Jinsung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5B
    • /
    • pp.264-273
    • /
    • 2005
  • Nowadays the integration of heterogeneous wireless networks become a hot issue in communications research area. Especiall,y, 3G and WiBro interworking will be introduced soon as users can be offered the most suitable service according to service area and service providers can reduce network construction and operation expenses. In this paper, we propose an interworking scheme for fast handoff between 3G and WiBro networks. The SCI (Smoothly Coupled Integration) scheme proposed in this paper takes advantages of the existing LCI (Loosely Coupled Integration) and TCI (Tightly Coupled Integration) scheme and can offer seamless services by providing fast handoff between 3G and WiBro although each network may work independently. Through extensive computer simulations using OPNET, the efficiency of the proposed scheme has been validated.

Vertical Integration and Its Performance - An Empirical Analysis on Korean Listed Corporations - (수직결합과 시장성과 간의 관련성 연구 - 한국 상장기업을 중심으로 -)

  • Kang, Dong K.
    • International Area Studies Review
    • /
    • v.12 no.3
    • /
    • pp.69-88
    • /
    • 2008
  • Firms or internal exchanges exist to eliminate or at least reduce transaction costs from the separating process in many firms by dealing more efficiently with bounded rationality, complexity, and tendency towards opportunism faced by the markets so that vertical integration is supposed to have a positive relationship with performance. The organizational structure of Korean economy in the latter part of the $20^{th}$ century is much related with this transaction costs' view. I propose to estimate the effect of vertical integration on the firm's performance using the data of the Korean listed corporations from 1991 to 1995, therefore. The estimated results show that vertical integration at firm level is negatively and significantly related with the firm's performance: the higher level of vertical integration the worse performance. However, the group level integration is not related with performance at all.

Design Optimization of Dental Implants Using Finite Element Analysis for Injecting Bioactive Materials

  • Lee, Kang-Soo;Lee, Yong-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.292-297
    • /
    • 2012
  • In order to improve osseointegration of dental implants with bone we studied an implant with holes inside its body to deliver bioactive materials based on a proposed patent. Bioactive materials can be selectively applied through holes to a patient according to diagnosis and the integration progress. After the bioactive material is applied, bone can grow into the holes to increase implant bonding and also enhance surface integration. In order to improve the concept and study the effect of bioactive material injection on implant integration, design optimization and integration research were undertaken utilizing the finite element method. A 2-dimensional simulation study showed that when bone grew into the holes after the bioactive material was injected, stress vertically distributed in the upper part of the implant was relieved and mild stress appeared at the opening of the injection holes. This confirmed the effect of the bioactive material and the contribution of the injection holes, but the maximum stress increased ten-fold at the opening. In order to reduce the maximum stress, the size, location, and the number of holes were varied and the effects were studied. When bioactive materials formed an interface layer between the implant and the mandible and four holes were filled with cortical and cancellous bones all the stress concentrated opposite to the loading side without holes disappeared. The stresses at the four outlets of the holes was mildly elevated but the maximum stress value was ten-fold greater compared to the case without the bioactive material.

A Study on the Simulation of Welding Deformation for accurate Assembling (고정밀도 조립을 위한 용접 변형의 해석에 관한 연구)

  • Sung, Ki-Chan;Jang, Kyung-Bok;Jung, Jin-Woo;Kang, Sung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF