• 제목/요약/키워드: Redox status

검색결과 57건 처리시간 0.022초

Pomegranate (Punica granatum) Peel Extract Efficacy as a Dietary Antioxidant against Azoxymethane-Induced Colon Cancer in Rat

  • Waly, Mostafa I.;Ali, Amanat;Guizani, Nejib;Al-Rawahi, Amani S.;Farooq, Sardar A.;Rahman, Mohammad S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4051-4055
    • /
    • 2012
  • Functional foods include antioxidant nutrients which may protect against many human chronic diseases by combating reactive oxygen species (ROS) generation. The purpose of the present study was to investigate the protective effect of pomegranate peel extract (PPE) on azoxymethane (AOM)-induced colon tumors in rats as an in vivo experimental model. Forty Sprague-Dawley rats (4 weeks old) were randomly divided into 4 groups containing 10 rats per group, and were treated with either AOM, PPE, or PPE plus AOM or injected with 0.9% physiological saline solution as a control. At 8 weeks of age, the rats in the AOM and PPE plus AOM groups were injected with 15 mg AOM/kg body weight, once a week for two weeks. After the last AOM injection, the rats were continuously fed ad-libitum their specific diets for another 6 weeks. At the end of the experiment (i.e. at the age of 4 months), all rats were killed and the colon tissues were examined microscopically for lesions suspected of being preneoplastic lesions or tumors as well as for biochemical measurement of oxidative stress indices. The results revealed a lower incidence of aberrant crypt foci in the PPE plus AOM administered group as compared to the AOM group. In addition, PPE blocked the AOM-induced impairment of biochemical indicators of oxidative stress in the examined colonic tissue homogenates. The results suggest that PPE can partially inhibit the development of colonic premalignant lesions in an AOM-induced colorectal carcinogenesis model, by abrogating oxidative stress and improving the redox status of colonic cells.

Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex-Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium

  • Xu, Danfeng;Jia, Zongxiao;Zhang, Lijuan;Fu, Shuilin;Gong, Heng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권5호
    • /
    • pp.753-761
    • /
    • 2020
  • To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct high-yielding 1,3-propanediol-producing K. pneumoniae strain.

백두옹탕(白頭翁湯)의 대장암 세포주 HCT-116 항암효과와 세포자멸사에 관한 연구 (Studies on the Anti-cancer Effect and the Mechanism of Apoptosis by Baekduong-tang in Human Colon Cancer Cell Line HCT-116)

  • 김종욱;문구;박찬희;이정한;지혜민
    • 대한한방내과학회지
    • /
    • 제31권2호
    • /
    • pp.273-289
    • /
    • 2010
  • Objectives : To investigate the anti-cancer effect of Baekduong-tang(BDOT) against cancer cells, the signaling pathway of apoptosis was explored in human colon cancer cells. Materials and Methods : Human colon cancer cell lines, including HT-29 and HCT-116 cells, were used. Cell viability was measured by MTT assay. Apoptosis was determined by DAPI nuclei staining and flow cytometry in HCT-116 cells treated with 0.25 mg/$m{\ell}$ Baekduong-tang for 48 hrs. Results : Baekduong-tang induced the apoptosis of p53 positive HCT-116 cells with G2/M phase arrest. Treatment with Baekduong-tang led to increased expression and phosphorylation of p53 and decreased expression of CDK2 and CDK6 in HCT-116 cells. It also activated caspase-3 through caspase-10 and caspase-9 activation. Finally, Baekduong-tang induced production $H_2O_2$, superoxide anion ($O_2^-$) and NO and modulated proteins expression including SOD, NOS, Bax and Bcl-2. Conclusions : These results indicate Baekduong-tang induces apoptotic death of HCT-116 cells through G2/M phase arrest and disturbance of intracellular redox status in a p53-dependent manner.

열화학적 수소 제조 기술 (Themochemical Cycles for Hydrogen Production from Water)

  • 김종원;박주식;황갑진;배기광
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.107-117
    • /
    • 2006
  • 물을 분해하여 수소를 만드는 방법으로서 열화학싸이클을 이용한 방법에 대하여 그동안의 연구 동향에 대하여 살펴보았다. 수소생산이란 관점에서 열화학싸이클이 갖는 장점은 일정한 고온의 열을 얻을 수 있다면, 반응속도의 향상과 아울러 대용량화가 가능하다는 점이다. 안정한 물을 분해하려면 물의 산화/환원이 용이한 매개체를 써서 수소 및 산소를 발생하게 하고 순환시키게 되는데, 매개체가 유독성 물질이라면 이 과정에서 누출이 되지 않도록 하여야 한다. 아직 상용화단계에는 미치지 못하였지만, 일본, 스위스, 이스라엘, 미국, 한국 등에서 집중적으로 연구되고 있는 내용은 IS 싸이클과 ZnO/Zn, $Fe_3O_4/FeO$등과 같은 금속산화물계를 이용한 싸이클들이며, 고온용 및 내부식성 소재와 시스템 분야에서 아직 해결해야할 점이 많다.

Protective Effects of Sweet Orange, Unshiu Mikan, and Mini Tomato Juice Powders on t-BHP-Induced Oxidative Stress in HepG2 Cells

  • Jannat, Susoma;Ali, Md Yousof;Kim, Hyeung-Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • 제21권3호
    • /
    • pp.208-220
    • /
    • 2016
  • The aim of this study was to investigate the protective effects of juice powders from sweet orange [Citrus sinensis (L.) Osbeck], unshiu mikan (Citrus unshiu Marcow), and mini tomato (Solanum lycopersicum L.), and their major flavonoids, hesperidin, narirutin, and rutin in tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. The increased reactive oxygen species and decreased glutathione levels observed in t-BHP-treated HepG2 cells were ameliorated by pretreatment with juice powders, indicating that the hepatoprotective effects of juice powders and their major flavonoids are mediated by induction of cellular defense against oxidative stress. Moreover, pretreatment with juice powders up-regulated phase-II genes such as heme oxygenase-1 (HO-1), thereby preventing cellular damage and the resultant increase in HO-1 expression. The high-performance liquid chromatography profiles of the juice powders confirmed that hesperidin, narirutin, and rutin were the key flavonoids present. Our results suggest that these fruit juice powders and their major flavonoids provide a significant cytoprotective effect against oxidative stress, which is most likely due to the flavonoid-related bioactive compounds present, leading to the normal redox status of cells. Therefore, these fruit juice powders could be advantageous as bioactive sources for the prevention of oxidative injury in hepatoma cells.

토양조건에 따른 고추와 토마토의 철 및 망간 흡수특성 (Uptake of Fe and Mn in Red Pepper and Tomato Plants under Different Soil Conditions)

  • 이주영;성좌경;박재홍;이수연;박성용;이예진;김태완;송범헌;장병춘
    • 한국토양비료학회지
    • /
    • 제42권3호
    • /
    • pp.207-213
    • /
    • 2009
  • 토양을 침지한 후 배수, 통기 및 침지를 조합한 처리에서 토양의 Eh와 수분함량을 조사함과 아울러 고추에 대하여 토양단독, 토양+상토+바로크의 혼용처리와 토마토에 대하여 토양단독, 토양+볏짚, 토양+퇴비, 토양+Aeration의 혼용처리를 하여 식물체 엽 중 Fe과 Mn흡수 특성을 구명하기 위하여 포트조건에서 시험을 수행하였다. 토양 환원처리 후 Eh와 토양 수분함량을 조사한 결과, 배수와 Aeration을 처리한 후 72시간부터 토양을 산화상태로 변화시켰으며, 토양 수분함량은 처리와 동시에 감소하기 시작하였다. 정식 후 30일에 채취한 고추 식물체의 엽 중 Fe와 Mn을 분석한 결과, 토양 단독처리구의 식물체 엽 중 Mn은 토양 산성에 의해 과잉 흡수($1,324mg\;kg^{-1}$) 되었으며, 길항작용에 의해 Fe 흡수장애가 나타났다. 혼합 토양 처리구에서의 식물체 엽 중 Mn 함량($947mg\;kg^{-1}$)은 토양 단독 처리구에 비해 적었으나 Fe 흡수장애를 야기하였다. 정식 후 60일에 채취한 토마토 식물체의 엽 중 Fe와 Mn을 분석한 결과에서 Fe 함량은 토양(50%) + 퇴비(50%)처리에서 가장 높았고, Mn 함량은 토양 단독 처리에서 가장 높게 나타났다. 본 시험의 결과로 볼 때 작물의 생육은 Eh 및 공극률이 토양 수분함량과 밀접한 관계가 있으며, 토양이 산성상태일 때 식물체는 토양으로부터 Mn을 우선적으로 흡수하며, 이는 Fe 결핍을 야기하는 것으로 판단되었다.

The differences between copper sulfate and tribasic copper chloride on growth performance, redox status, deposition in tissues of pigs, and excretion in feces

  • Zheng, Ping;Pu, Bei;Yu, Bing;He, Jun;Yu, Jie;Mao, Xiangbing;Luo, Yuheng;Luo, Junqiu;Huang, Zhiqing;Luo, Chenggui;Wang, Shaohui;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권6호
    • /
    • pp.873-880
    • /
    • 2018
  • Objective: The objective of this experiment was to compare the effects of adding 130 mg/kg Cu from either copper sulfate (CS) or tribasic copper chloride (TBCC) on growth performance, mineral deposition in tissues, and the excretion in feces of pigs as well as changes in the mineral contents in tissues and feces when the supplemental Cu level was decreased from 130 mg/kg to 10 mg/kg. Methods: A total of 72 pigs ($32.6{\pm}1.2kg$) were randomly assigned to a CS diet or a TBCC diet with 6 pens per treatment. The trial lasted 102 d and included 3 phases (phase 1, 1 to 30 d; phase 2, 31 to 81 d; and phase 3, 82 to 102 d). The supplemental levels of Cu in the 2 treatments were 130 mg/kg in phase 1 and 2 and 10 mg/kg in phase 3. Results: The results showed that pigs fed the CS diet tended to have higher average daily gain than pigs fed the TBCC diet during d 1 to 81 (p<0.10). Compared with CS, TBCC increased the activities of aspartate transaminase (AST), ceruloplasmin, and superoxide dismutase in serum on d 30 (p<0.05). The TBCC decreased the Cu level in the liver on d 81 (p<0.05) and increased the Mn level in the liver on d 102 (p<0.05). The concentration of Cu in feces sharply decreased when the supplemental Cu level in diet changed from 130 mg/kg to 10 mg/kg in both diets (p<0.05). Conclusion: The result suggested that TBCC and CS had no significant difference on growth performance but TBCC had higher activities of AST and antioxidant enzymes and lower liver Cu than CS when pigs fed diets with 130 mg Cu /kg diet.

Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo

  • Yadav, Brijesh;Pandey, Vijay;Yadav, Sarvajeet;Singh, Yajuvendra;Kumar, Vinod;Sirohi, Rajneesh
    • Journal of Animal Science and Technology
    • /
    • 제58권1호
    • /
    • pp.2.1-2.10
    • /
    • 2016
  • Background: Heat stress adversely affects the physiological and metabolic status, and the productive performance of buffalo. Methods: The present study was conducted to explicate the effect of misting and wallowing cooling strategies during heat stress in lactating Murrah buffalo. The study was conducted for three months (May-July) of which first two months were hot dry and last month was hot humid. Eighteen lactating buffaloes, offered the same basal diet, were blocked by days in milk, milk yield and parity, and then randomly allocated to three treatments: negative control (no cooling), cooling by misting, and cooling by wallowing. Results: The results showed higher (P < 0.05) milk yield in buffaloes of misting and wallowing group compared to control during the experimental period however wallowing was found more (P < 0.05) effective during July (hot humid period). Both the treatments resulted into significant (P < 0.05) reduction in rectal temperature (RT) and respiratory rate (RR) compared to control animals during study period whereas wallowing was found to be effective on pulse rate (PR) only during July. Both treatments were resulted in mitigating the heat stress mediated decrease in packed cell volume (PCV), lymphocytopnoea and neutrophilia whereas decrease in total erythrocyte count (TEC) and monocytes was only mitigated by wallowing. Heat load induced alteration in serum creatinine and sodium concentration was significantly (P < 0.05) ameliorated by misting and wallowing whereas aspartate aminotransferase, alkaline phosphatase and superoxide dismutase activity, and reactive oxygen species concentration could be normalized neither by misting nor by wallowing. The significant (P < 0.05) increment in serum cortisol and prolactin levels observed in June and July period in control animals was significantly (P < 0.05) prevented by misting and wallowing. Conclusions: It can be concluded that misting and wallowing were equally effective in May and June (hot dry period) whereas wallowing was more effective during hot humid period in preventing a decline in milk production and maintaining physiological, metabolic, endocrine and redox homeostasis.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF