• Title/Summary/Keyword: Redox behavior

Search Result 126, Processing Time 0.023 seconds

Electrochemical Properties of Viologen Self-Assembly Monolayer Using QCM (수정진동자를 이용한 Viologen Self-Assembly 단분자막의 전기화학적 특성)

  • Ock, J.Y.;Song, S.H.;Shin, H.K.;Park, J.C.;Chang, J.S.;Chang, S.M.;Kwon, Y.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.403-406
    • /
    • 2002
  • Molecular self-assembled of surfactant viologen are of recent interest because they can from functional electroeds as well as micellar assemblies. which can be profitably utilized for display devices. photoelectrochemical studies and electrocatalysis as electron acceptor or electron mediator[1-3]. Fromherz et al studied the se1f-assembly of thiol and disulfide derivatives of viologens bearing long n-alkyl chains on Au electrode surface[4]. In this study, the electrochemical behavior of self-assembled viologen monolayer has been investigated with QCM, which has been known as nano-gram order mass detector. The self-assembly process of viologen was monitored using resonant frequency$({\Delta}F)$ and resonant resistance(R). The redox process of viologen was observed with resonant frequency$({\Delta}F)$.

  • PDF

Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate derivatives (2-Amino-1-cyclopentene-1-dithiocarboxylate 유도체들의 전극 반응메카니즘)

  • Kim, Yeong Sin;Kim, U Seong;Sim, Yun Bo;Choe, Seong Rak
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.260-266
    • /
    • 1990
  • The electrochemical behavior of N-methyl-2-amino-l-cyclopentene-l-dithiocarboxylic acid $(N-CH_3 acdc) and 2-amino-l-cyclopentene-l-dithiomethyl ester (S-CH_3 acdc) in DMF have been investigated by the use of polarography, cyclic voltammetry and coulometry. The dimer of N-CH_3 acdc is further oxidized at +0.98 V via 2-electron process to produce free sulfur atom and cyclization product. The ring formation between two dithio group occurs along with the elimination of one sulfur atom. The elimination of sulfur atom occurs via two electron oxidation process at + 0.98 V vs. Ag/AgCl electrode. However, the cyclization does not occur in the S-CH_3$ acdc.

  • PDF

Trace Mercury Determination by Differential Pulse Anodic Stripping Voltammetry Using Polythiophene-Quinoline/Glassy Carbon Modified Electrode

  • Yoo, Kwang-Sik;Woo, Sang-Beom;Jyoung, Jy-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • A Polythiophene-quinoline/glassy carbon (PTQ/GC) modified electrode was developed for the determination of trace mercury in industrial waste water, natural water, soil, and other media. The electrode was prepared by the cyclic voltammetric polymerization of thiophene and quinoline on glassy carbon (GC) electrode by the potential application from -0.6 V to +2.0 V (50 mV/sec) in a solution of 0.1 M thiophene, quinoline and tetrabutyl ammonium perchlorate (TBAP) in acetonitrile. Optimum thickness of the polymer membrane on the GC electrode was obtained with 20 repeated potential cyclings. The redox behavior of Cu(Ⅱ) and Hg(Ⅱ) were almost identical on this electrode. The addition of 4-(2-pyridylazo)resorcinol (PAR) to the solution containing Cu(Ⅱ) and Hg(Ⅱ) allowed the separation of the components due to the formation of the Cu(Ⅱ)-PAR complex reduced at -0.8V, which was different from the Hg(Ⅱ) reduced at -0.5 V on a saturated calomel electrode (SCE). The calibration graph of Hg(Ⅱ) shows good linear relationship with the correlation factor of 0.9995 and the concentration gradient of 0.33 ㎂/㎠/ppb down to 0.4 ppb Hg. The method developed was successfully applied to the determination of mercury in samples such as river, waste water, and sea water.

Study the Electrochemical Reduction of Some Triazines in N,N-Dimethylformamide at Glassy Carbon Electrode

  • Fotouhi, L.;Farzinnegad, N.;Heravi, M.M.;Khaleghi, Sh.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1751-1756
    • /
    • 2003
  • An electrochemical study related to the electroreduction of 4-amino-6-methyl-3-thio-1,2,4-triazin-5-one(I), 6-methyl-3-thio-1,2,4-triazin-5-one(II), and 2,4-dimetoxy-6-methyl-1,3,5-triazine(III) in dimethylformamide at glassy carbon electrode has been performed. A variety of electrochemical techniques, such as differential pulse voltammetry (DPV), cyclic voltammetry (CV), chronoamperometry, and coulometry were employed to clarify the mechanism of the electrode process. The compounds I and II with thiol group exhibited similar redox behavior. Both displayed two cathodic peaks, whereas the third compound, III, without thiol group showed only one cathodic peak in the same potential range of the second peak of I and II. The results of this study suggest that in the first step the one electron reduction of thiol produced a disulfide derivative and in the second reduction step the azomethane in the triazine ring was reduced in two electron processes. A reduction mechanism for all three compounds is proposed on this basis. In addition, some numerical constants, such as diffusion constant, transfer coefficient, and rate constant of coupled chemical reaction in the first reduction peak were also reported.

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Electrochemical Behavior of Lithium Titanium oxide/activated Carbon Composite for Electrochemical Capacitor

  • Yang, Jeong-Jin;Kim, Hong-Il;Yuk, Young-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • The $Li_4Ti_5O_{12}$/AC composite was prepared by sol-gel process with ultrasonication. The prepared composite was characterized by SEM, XRD and TG analysis, and their electrochemical behaviors were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, the $Li_4Ti_5O_{12}$ particles coated on AC surface had an average particle size of 100 nm and showed spinel-framework structure. When the potential range of the $Li_4Ti_5O_{12}$/AC composite was extended from 0.1 to 2.5 V, redox peaks and electric double layer property were revealed. The initial discharge capacity of $Li_4Ti_5O_{12}$/AC composite was 218 mAh $g^{-1}$ at 1 C. The enhancement of discharge capacity was attributed to electric double layer of added activated carbon.

Corrosion of Stainless Steel Pipes Buried in the Soils of Seoul Metropolitan During One Year (1년 동안 서울지역 토양에 매설된 스테인리스강의 부식)

  • Hyun, Youngmin;Kim, Heesan;Kim, Young-Ho;Jang, Hyunjung;Park, Youngbog;Choi, Youngjune
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.56-64
    • /
    • 2012
  • Factors affecting corrosion of stainless steels such as pH, oxidation and redox potential (ORP), soil resistivity, water content of soil, chloride ion concentration, bacteria activity, and corrosion potential have been investigated using soil analysis, bacterial analysis, surfacial analysis, and analysis of corrosion potentials of several stainless steels buried in 8 sites of Seoul metropolitan for one year. Corrosion potential was affected by occurrance of corrosion as well as bacteria activity but the behavior of corrosion potential with time is different depending on occurrance of corrosion and bacteria activity. The main factor affecting corrosion of stainless steels in soil is level of chloride ion concentration which is also a main factor affecting corrosion of stainless steels in chloride containing drinkable water. Furthermore, guideline of stainless steels in drinkable water is concluded to be applicable to that in soil by the results from surfacial analysis.

Electrochemical Properties of Self-Assembled Viologen Monolayer Using QCM (QCM을 이용한 자기조립화된 Viologen 단분자막의 전기화학적 특성 연구)

  • Ock, Jin-Young;Park, Sang-Hyun;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1520-1522
    • /
    • 2003
  • Molecular self-assembled of surfactant viologen are of recent interest because they can from functional electrodes as well as micellar assemblies, which can be Profitably utilized for display devices, photoelectrochemical studies and electrocatalysis as electron acceptor or electron mediator. Fromherz et al studied the self-assembly of thiol and disulfide derivatives of viologens bearing long n-alkyl chains on Au electrode surface. The electrochemical behavior of self-assembled viologen monolayer has been investigated with QCM, which has been known as nano-gram order mass detector. The self-assembly process of viologen was monitored using resonant frequency (${\Delta}$F) and resonant resistance (R). The redox process of viologen was observed with resonant frequency (${\Delta}$F).

  • PDF

Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance

  • Choi, Moon-Jung;Lim, Byung-Kwon;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.200-203
    • /
    • 2008
  • A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Polarographic Behavior of Oxovanadium (IV) Complex of Mercaptopyridine N-Oxide

  • Shim, Yoon-Bo;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.225-230
    • /
    • 1987
  • The redox properties of 2-mercaptopyridine N-oxide (mpno) and its oxovanadium complex, $VO (mpno)_2$ have been studied by the use of polarography and cyclic voltammetry. The radical anion of mpno is generated in acetone and is adsorbed to the electrode to form an adsorption wave at -0.21 V vs Ag/AgCl electrode. The normal wave appeared at -0.50 V is attributed to the formation of radical anion. The $VO (mpno)_2$ exhibits one oxidation wave at +0.57 V, and two reduction waves at -1.07 V and -1.76 V vs. Ag/AgCl electrode; the oxidation is fully reversible one-electron process ($VO (mpno)_2\;{\leftrightarrow}\;VO(mpno)_2^+ + e).$ The reduction wave at -1.07 V is quasireversible and is arised from the formation of $VO (mpno)_2^-.$ The second reduction wave at -1.76 V is irreversible and this reduction process consists of two one-electron steps. The sulfur containing ligands seem to enhance the stability of lower oxidation state of vanadium while the oxygen or nitrogen donor of the ligands stabilize the higher oxidation state of vanadium when comparisons are made among several oxovanadium complexes.