• 제목/요약/키워드: Redesigned Pass Schedule

검색결과 6건 처리시간 0.017초

습식 신선공정 해석 및 단선율 저감을 위한 패스 재설계 (Analysis of wet Wire Drawing Process and Pass Redesign to Reduce Wire Breakage)

  • 이상곤;김민안;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1034-1037
    • /
    • 2002
  • Wet wire drawing process is used to produce fine wire in the industrial field. The production of fine eire by using wet wire drawing process with appropriate dies pass schedule would be impossible without understanding of relationship between process parameters such as material properties, dies reduction, friction conditions, drawing speed etc. However, up to new, dies pass schedule of wet wire drawing process has performed by trial and error of expert. Therefore, this study investigates the relationship between process parameters quantitatively and analyzes a conventional wet wire drawing process. Using the results, the conventional pass schedule can be redesigned to reduce the wire breakage during wet wire drawing. To verily the result of this study, the wet wire drawing experiment was performed. And the results between conventional process and redesigned pass schedule were compared. As the comparison of results, the wire breakage was considerably reduced in the redesigned pass schedule more than conventional pass schedule.

  • PDF

습식 신선공정의 단선율 저감을 위한 패스 재설계 (Pass Redesign for Reduction of Wire Breakage in the Wet Wire Drawing Process)

  • 이상곤;김민안;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 제5회 압출 및 인발가공 심포지엄
    • /
    • pp.71-77
    • /
    • 2002
  • The Production of fine wire through wet wire drawing process with appropriate pass schedule would be impossible without understanding of relationship among many process parameters. Therefore, this paper investigates the relationship among process parameters of wet wire drawing process. In this study, it is possible to obtain the important basic data that can be used in the pass schedule of multi-pass wet wire drawing process. In order to verify the effectiveness of the analysis, pass redesign was performed based on the result of analysis to reduce the wire breakage. The wire breakage between the conventional pass schedule and the redesigned pass schedule was compared by the FE analysis and the wet win drawing experiment.

  • PDF

다단 습식 신선공정 해석 및 적용 (Analysis of Multi-Pass Wet Wire Drawing Process and Its Application)

  • 이상곤;김병민
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.689-695
    • /
    • 2005
  • Multi-pass wet wire drawing process is used to produce fine wire in the industrial field. The production of fine wire through multi-pass wet wire drawing process with appropriate dies pass schedule would be impossible without understanding the relationship among many process parameters such as material properties, dies reduction, friction conditions, drawing speed etc However, in the industrial field, dies pass schedule of multi-pass wet wire drawing process has been executed by trial and error of experts. This study investigated the relationship among many process parameters quantitatively to obtain the important process information fur the appropriate pass schedule of multi-pass wet wire drawing process. Therefore, it is possible to predict the many important process parameters of multi-pass wet wire drawing process such as dies reduction, machine reduction, drawing force, backtension force, slip rate, slip velocity rate, power etc. The validity of the analyzed drawing force was verified by FE simulation and multi-pass wet wire drawing experiment. Also, pass redesign was performed based on the analyzed results, and the wire breakage between the original pass schedule and the redesigned pass schedule was compared through experiment.

Steel Cord 생산을 위한 초고속 습식 신선 패스 설계 (Pass Design of Wet-Drawing with Ultra High Speed for Steel Cord)

  • 황원호;이상곤;고우식;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.427-430
    • /
    • 2005
  • Improving the productivity of steel cord is required due to the increase in demand for it, even though steel cord being used as a reinforcement of a tire has been produced at multi-pass wet wire drawing process over 1000m/min. To improve the productivity, if just increase drawing speed, it causes temperature rise, fracture arisen by embrittlement during drawing process. To increase drawing speed affecting productivity, the variation of wire temperature during multi-pass wet wire drawing process is investigated in this study. In result, the multi-pass wet wire drawing process is redesigned. The redesigned wet drawing process with 27 passes efficiently controls wire temperature during drawing process. It, therefore, enables drawing process to be possible at ultra high speed with 2000m/min. It becomes possible to improve the productivity of steel cord in this paper because the increase in drawing speed could be achieved.

  • PDF

고탄소강 연속 신선 공정의 재설계를 위한 등온패스스케줄 프로그램의 개발 (Development of Isothermal Pass Schedule Program for the Re-design of a Continuous High Carbon Steel Wire Drawing Process)

  • 김영식;김동환;김병민;김민안;박용민
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.57-64
    • /
    • 2001
  • The high speed in the wire-drawing process to meet the demands for the increased productivity has a great effect on the heat generated due to plastic deformation and friction between the wire and the drawing dies. During the high carbon steel wire drawing process, the temperature rise gives a great influence to the fracture of wire. In this paper, to control the temperature rise in the wire after the deformation through the drawing die, the calculation method of the wire temperature, which includes the temperature rise in the deformation zone as well as the temperature drop in the block considering the heat transfer among the wire, cooling water and surrounding air, is proposed. These calculated results of the wire temperature at the inlet and exit of the drawing die at each pass are compared with the measured wire temperatures and verified its efficiency. So, using the program to predict the wire temperature, the isothermal pass schedule program was developed. By applying this isothermal pass schedule program to the conventional process condition, a new isothermal pass schedule is redesigned through all passes. As a result, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

  • PDF

Steel Cord 생산을 위한 초고속 습식 신선 패스 설계 (Pass Design of wet-Drawing with Ultra High Speed for Steel Cord)

  • 황원호;이상곤;김병민;고우식
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.785-790
    • /
    • 2005
  • High-speed multi-pass wet wire drawing has become very common for production of high-carbon steel cord because of the increase in customer demand and production rates in real industrial fields. Although, the wet wire drawing process is performed at a high speed usually above 1000m/min, greater speed is required to improve productivity. However, in the high-carbon steel wire drawing process, the wire temperature rises greatly as the drawing speed increase. The excessive temperature rise makes the wire more brittle and finally leads to wire breakage. In this study, the variations in wire temperature during the multi-pass wet wire drawing process were investigated. A multi-pass wet wire drawing process with 21 passes, which is used to produce steel cord, was redesigned by considering the increase in temperature. Through a wet wire drawing experiment, it was possible to increase the maximum final drawing speed to 2000m/min.