• Title/Summary/Keyword: Red-pepper plants

Search Result 138, Processing Time 0.026 seconds

Control Effects of Indole Isolated from Xenorhabdus nematophila K1 on the Diseases of Red Pepper (Xenorhabdus nematophila K1 유래물질 인돌의 고추 병해 방제 효과)

  • Jeon, Mi-Hyeon;Cheon, Won-Su;Kim, Yong-Gyun;Hong, Yong-Pyo;Yi, Young-Keun
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Indole compound is a bacterial metabolite synthesized and released by an entomopathogenic bacterium, Xenorhabdus nematophila K1. The antibiotic activity was evaluated against plant pathogens, such as Phytophthora blight and anthracnose of red pepper. Indole significantly suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight conditions, indole maintained the antifungal activity for at least sixty days. The activity was not affected under the condition of soil-water. When the indole suspension was applied to surface soil before transplanting of red pepper seedlings and was then regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight, anthracnose, soft rot, and black mold) by about 30%. These results suggest that indole can be used to control Phytophthora blight and anthracnose of red pepper.

Plant Growth Substances Produced by Methylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentum L.) and Red Pepper (Capsicum annuum L.) Growth

  • Ryu, Jeong-Hyun;Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Indiragandhi, Pandiyan;Kim, Kyoung-A;Anandham, Rangasamy;Yun, Jong-Chul;Kim, Kye-Hoon;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1622-1628
    • /
    • 2006
  • Bacteria from the Methylobacterium genus, called pink-pigmented facultative methylotrophic bacteria (PPFMs), are common inhabitants of plants, potentially dominating the phyllosphere population, and are also encountered in the rhizosphere, seeds, and other parts of plants, being versatile in nature. The consistent success of the Methylobacterium plant association relies on methylotrophy, the ability to utilize the one-carbon compound methanol emitted by plants. However, the efficiency of Methylobacterium in plant growth promotion could be better exploited and thus has attracted increasing interest in recent years. Accordingly, the present study investigated the inoculation effects of Methylobacterium sp. strains CBMB20 and CBMB 110 on seed imbibition to tomato and red pepper on the growth and accumulation of phytohormone levels under gnotobiotic conditions. Seeds treated with the Methylobacterium strains showed a significant increase in root length when compared with either the uninoculated control or Methylobacterium extorquens $miaA^-$ knockout mutanttreated seeds. Extracts of the plant samples were used for indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), and dihydrozeatin riboside (DHZR) assays by immunoanalysis. The treatment with Methylobacterium sp. CBMB20 or CBMB 110 produced significant increases in the accumulation of IAA and the cytokinins t-ZR and DHZR in the red pepper extracts, whereas no IAA was detected in the tomato extracts, although the cytokinin concentrations were significantly increased. Therefore, this study proved that the versatility of Methylobacterium as a plant-growth promoting bacteria could be better exploited.

A pathogen-induced osmotin-like protein gene, CAOSMl, from pepper: Differential expression and in situ localization in pepper tissues during pathogen infection and abiotic stresses

  • Hong, J.K.;Jung, H.W.;Lee, B.K.;Lee, S.C.;Hwang, B.K.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.78.1-78
    • /
    • 2003
  • An osmotin-like protein (CAOSMl) gene was isolated from pepper leaves infected with the avirulent strain Bv5-4a of Xmthomonas campestris pv. vesicatoria. The cDNA encodes a polypeptide of 250 amino acids with a molecular mass of 27, 361 Da. Its amino acid sequence is highly homologous to various osmotin-like proteins from other plant species. The CAOSMl gene expression was organ- and tissue-specifically regulated In pepper plants. The CAOSMl mRNA was intensely localized in the endodermis area of root tissue and in the phloem cells of vascular bundles of red fruit tissue, but not in leaf, stem, and green fruit tissues of healthy pepper plants. Infection by X. c. pv vesintoria, Colletotrichum coccodes, or Phytopkhora capsici iinduced CAOSMl transcription in the leaf or stem tissues. Expression of the CAOSMl gene was somewhat higher in the incompatible than the compatible interactions of pathogens with pepper. The CAOSMl mRNA was prevalently localized in the phloem cells of the vascular bundle of leaf tissues infected by C. coccodes. The CAOSMl gene was activated in leaf tissues by treatment with ethylene, methyl jasmonate, high salinity, cold acclimation and mechanical wounding, but not by abscisic acid (ABA) and drought. These results indicate that the pepper CAOSMl protein functions in response to Pathogens and some abiotic stresses in pepper plants

  • PDF

Photosynthetic activity and photoinhibition in seedlings of red pepper (Capsicum annuum L.) grown from low dose $\gamma$-irradiated seeds

  • Kim, Jae-Sung;Lee, Young-Keun;Lee, Hae-Youn;Baek, Myung-Hwa;Park, Youn-Il
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.397-399
    • /
    • 2002
  • The seedling height, leaf width and leaf length of pepper increased in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than the control. Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. Fv/Fm was decreased with increasing illumination time by 50% after 4 hours, while Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the low dose $\gamma$ radiation increased resistance of plants to photoinhibition.

  • PDF

Biocontrol of Phytophthora Blight and Anthracnose in Pepper by Sequentially Selected Antagonistic Rhizobacteria against Phytophthora capsici

  • Sang, Mee Kyung;Shrestha, Anupama;Kim, Du-Yeon;Park, Kyungseok;Pak, Chun Ho;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.29 no.2
    • /
    • pp.154-167
    • /
    • 2013
  • We previously developed a sequential screening procedure to select antagonistic bacterial strains against Phytophthora capsici in pepper plants. In this study, we used a modified screening procedure to select effective biocontrol strains against P. capsici; we evaluated the effect of selected strains on Phytophthora blight and anthracnose occurrence and fruit yield in pepper plants under field and plastic house conditions from 2007 to 2009. We selected four potential biocontrol strains (Pseudomonas otitidis YJR27, P. putida YJR92, Tsukamurella tyrosinosolvens YJR102, and Novosphingobium capsulatum YJR107) among 239 bacterial strains. In the 3-year field tests, all the selected strains significantly (P < 0.05) reduced Phytophthora blight without influencing rhizosphere microbial populations; they showed similar or better levels of disease suppressions than in metalaxyl treatment in the 2007 and 2009 tests, but not in the 2008 test. In the 2-year plastic house tests, all the selected strains significantly (P < 0.05) reduced anthracnose incidence in at least one of the test years, but their biocontrol activities were variable. In addition, strains YJR27, YJR92, and YJR102, in certain harvests, increased pepper fruit numbers in field tests and red fruit weights in plastic house tests. Taken together, these results indicate that the screening procedure is rapid and reliable for the selection of potential biocontrol strains against P. capsici in pepper plants. In addition, these selected strains exhibited biocontrol activities against anthracnose, and some of the strains showed plant growth-promotion activities on pepper fruit.

Competitive Effects of Allelochemics on the Monoculture and Corss-cropping Culture System of Plants (작물(作物)의 단일(單一) 및 교호(交互) 재배시(栽培時) 알레로파지 특성(特性)에 관(關)한 연구(硏究))

  • Suh, Jang-Sun;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.259-264
    • /
    • 1993
  • Allelopathic chemicals exudated from plants stimulate or inhibit crops directly or indirectly. To prove the effects of allelochemics, we isolated and identified the compounds by bioassays on the monoculture and crosscropping cultre systems. p-Coumaric acid were exudated on all of the test crops such as tomato, red pepper, lettuce, chinese cabbage and sesame, but pyrogallol and phenylacetic acid on tomato. hydroquinone on red pepper and egg plant, pyrogallol on lettuce, and vanillic acid on chinese cabbage. The highest total concentration of allelochemics was $5,883{\mu}g$ on tomato, lowest was $220{\mu}g/g$ dry plant weight on sesame. On the cross-cropping culture of tomato-egg plant, tomato-red pepper, chinese cabbage-egg plant, chinese cabbage-red pepper and chinese cabbage-sasame, the plant height, aerial dry weight and total dry weight of the tomato and the chinese cabbage were inereased contrast with monoculture, but decreased greatly on red pepper and sesame. Growth rate of both crops on the cross-cropping culture of tomato-chinese cabbage declined, while that of chinese cabbage was increased but lettuce decreased on the chinese cabbage-lettuce cross-cropping culture contrast with monoculture.

  • PDF

Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography

  • Park, Eunsoo;Hong, Suk-Ju;Lee, Ah-Yeong;Park, Jongmin;Cho, Byoung-Kwan;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Purpose: This study was performed to evaluate the feasibility of using an infrared thermography technique for phenotype analysis of pepper seedlings exposed to a low-temperature environment. Methods: We employed an active thermography technique to evaluate the thermal response of pepper seedlings exposed to low-temperature stress. The temperatures of pepper leaves grown in low-temperature conditions ($5^{\circ}C$, relative humidity [RH] 50%) for four periods (6, 12, 24, and 48 h) were measured in the experimental setting ($23^{\circ}C$, RH 70%) as soon as pepper seedling samples were taken out from the low-temperature environment. We also assessed the visible images of pepper seedling samples that were exposed to low-temperature stress to estimate appearance changes. Results: The greatest appearance change was observed for the low-temperature stressed pepper seedlings that were exposed for 12 h, and the temperature from these pepper seedling leaves was the highest among all samples. In addition, the thermal image of low-temperature stressed pepper seedlings for 6 h exhibited the lowest temperature. Conclusions: We demonstrated that the leaf withering owing to the water deficiency that occurred under low-temperature conditions could induce an increase in temperature in plant leaves using the infrared thermography technique. These results suggested that the time-resolved and averaged thermal signals or temperatures of plants could be significantly associated with the physiological or biochemical characteristics of plants exposed to low-temperature stress.

Incidence of Altermaria Species in Red Pepper and Sesame from Korea and Their Ability to Produce Mycotoxins (한국산 고추와 참깨에 발생하는 Alternaria의 종류와 이들의 진균독소 생성능력)

  • 이향범;유승헌
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1995
  • Alternaria alternata and A. solani were identified from 130 Alternaria isolates obtained from red pepper fruits, and three species including A. alternata, A. sesami and A. sesamicola were detected from 150 isolates from sesame seeds. Among the 4 Alternaria species, A. alternata was the predominant fungus from both plants, having incidence of 95.4% in red pepper and 56.0% in sesame. Of the total 280 isolates, cultures on autoclaved rice of 75 isolates were tested for toxicity to 21-day-old virgin female rats. Out of 50 isolates of A. alternata, 17 were lethal to rats, inducing congestion and hemorrhage of stomach and intestine and kidney enlargement, and 8 caused lack of weight gain or weight loss. The other 25 isolates of A. alternat and all the isolates of A. sesami, A. sesamicola and A. solani, showed no significant indication of toxicity. Production of mycotoxins in the rice cultures of the above 75 isolates belonging to 4 species was analyzed. Alternaria cultures were extracted with methanol and purified by using solvent partition, thin-layer chromatography, and high performance liquid chromatography. Of the four species tested, all produced alternariol (AOH) and alternariol monomethyl ether (AME), three (A. alternata, A. sesami and A. sesamicola) produced alternuene (ALT) and altertoxin-I (ATX-I), and only A. alternata produced tenuazonic acid (TA). TA was produced by all of the highly toxic (lethal to rats) isolates of A. alternata, but not by any nontoxic isolates.

  • PDF

Control of Fungal Diseases with Antagonistic Bacteria, Bacillus sp. AC-1

  • Park, Yong-Chul-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.50-61
    • /
    • 1994
  • Biological control of important fungal diseases such as Phytophthora blight of red pepper, gary mold rot of vegetables, and powdery mildew of many crops was attempted using an antagonistic bacterium, Bacillus sp. AC-1 in greenhouses and fields. The antagonistic bacterium isolated from the rhizosphere soils of healthy red pepper plant was very effective in the inhibition of mycelial growth of plant pathogenic fungi in vitro including Phytophthora capsici, Rhizoctonia solani, Pyricularia oryzae, Botrytis cinerea, Valsa mali, Fusarium oxysporum, Pythium ultimum, Alternari mali, Helminthosporium oryzae, and Colletotrichum gloeosporioides. Culture filtrate of antagonistic Bacillus sp. AC-1 applied to pot soils infested with Phytophthora capsici suppressed the disease occurrence better than metalaxyl application did until 37 days after treatment in greenhouse tests. Treatments of the bacterial suspension on red pepper plants also reduced the incidence of Phytophthora blight in greenhouse tests. In farmers' commercial production fields, however, the controlling efficacy of the antagonistic bacteria was variable depending on field locations. Gray mold rot of chinese chives and lettuce caused by Botrytis cinerea was also controlled effectively in field tests by the application of Bacillus sp. AC-1 with control values of 79.7% and 72.8%, respectively. Spraying of the bacterial suspension inhibited development of powdery mildew of many crops such as cucumber, tobacco, melon, and rose effectively in greenhouse and field tests. The control efficacy of the bacterial suspension was almost same as that of Fenarimol used as a chemical standard. Further experiments for developing a commercial product from the antagonistic bacteria and for elucidating antagonistic mechanism against plant pathogenic fungi are in progress.

  • PDF

Detection of Plant Pathogenic Viruses in Commercial Gochujang (Fermented Red Pepper Paste) from Korea

  • Ko, Seoyeon;Kim, Na-Kyeong;Lee, Hyo-Jeong;Ryu, Tae-Ho;Hong, Jin-Sung;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.503-508
    • /
    • 2020
  • The potential transmission of plant pathogenic viruses through processed foods could be a source of concern for global crop production; however, there is a lack of supporting evidence. The present study was conducted to investigate the presence of plant pathogenic viruses in five samples of gochujang (fermented red pepper paste) manufactured in Korea. Several viruses infecting pepper were detected by reverse transcription-polymerase chain reaction, among which the pepper mild mottle virus (PMMoV) was detected in all five samples, at concentrations ranging from 2.8 to 7.0 (log10 copies/ml). In addition, PMMoV was observed by transmission electron microscopy in all five samples. The samples exhibited viral pathogenicity to Nicotiana benthamiana plants, indicating that global trade of processed products could be a possible source of the transmission of plant viruses.