• Title/Summary/Keyword: Red-pepper plants

Search Result 138, Processing Time 0.02 seconds

Iron Accumulation in Transgenic Red Pepper Plants Introduced Fp1 Gene Encoding the Iron Storage Protein

  • Kim, Young-Ho;Lee, Young-Ok;Nou, Ill-Sup;Shim, Ill-Yong;Toshiaki Kameya;Takashi Saito;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • The Fp1 gene, originally isolated from red pepper seedlings, encode the iron storage protein, and have a high homology with ferritin genes at DNA and amino acid level. In order to determine ferritin protein expression in vegetative tissue. Fp1 gene was constructed in plant expression vector(PIG12IHm) and introduced in red pepper(var. Bukang, Chungyang and Kalag-Kimjang 2) via Agrobacterium tumefaciensmediated transformation. After selection on MS media containing Kanamycin(Km), putatively selected transformants were confirmed by amplification of selectable marker gene(Fp1 and NPII) by polymerase chain reaction. Northern blot showed that transcripts of Fp1 gene were detected in mature leaves of the plants. In A6, A7 and A8 and A14 of transgenic plants, transcript of Fp1 gene was increased seven-fold to eight-fold than other transgenic plants. Also the proteins obtained from leaves of transgenic plants were immunologically detected by Western blot using rabbit anti-ferritin polyclonal antibody. The expression protein appeared as strong band of apparent mass of 23.5kDa. suggesting the iron accumulation in transgenic red pepper plants.

  • PDF

Regulation of Ethylene Emission in Tomato (Lycopersicon esculentum Mill.) and Red Pepper (Capsicum annuum L.) Inoculated with ACC Deaminase Producing Methylobacterium spp.

  • Yim, Woo-Jong;Woo, Sung-Man;Kim, Ki-Yoon;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Improvement of plant growth by Methylotrophic bacteria can be influenced through alterations in growth modulating enzymes or hormones, especially by decreasing ethylene levels enzymatically by 1-aminocyclopropane-1-carboxylate (ACC) deaminase or by production of indole-3-acetic acid (IAA). In this study, the effect of seven strains of Methylobacterium on seedling ethylene emission of tomato and red pepper plants was evaluated under greenhouse condition. Ethylene emission was lowest in Methylobacterium oryzae CBMB20 inoculated tomato plants and CBMB110 inoculated red pepper plants at 47 days after sowing (DAS). However, at 58 DAS all inoculated plants showed almost similar pattern of ethylene emission. Methylobacterium inoculated tomato and red pepper plants showed significantly less ethylene emission compared to control. Our results demonstrated that Methylobacterium spp. inoculation promotes plant growth due to the reduction of ethylene emission and therefore can be potentially used in sustainable agriculture production systems.

Effect of Acidic Electrolyte Water on Growth and Infection of Phytophthora capsici (고추 역병균(Phytophthora capsici)의 발육과 감염에 미치는 산성전해수의 영향)

  • 이중환;권태룡;문재덕;이준탁
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.440-444
    • /
    • 1998
  • This experiment was carried out to elucidate the effect of electrolytic water on the growth and infection of Phytophthora capsici. Zoospores of P. capsici did not grow on potato dextrose agar when the pathogen was cultured after suspended in electrolytifc water (pH 2.5, 3.0, 3,5) with HCI solution. When the 100 ml of electrolytic water (pH 2.5, 3.0, 3.5) was irrigated on the red pepper plants that had been inoculated by P. capsici (103 zoospores/ml), the red pepper plants were not infected but irrigated with sterilized water (pH 6.5) the red pepper plants were infected. With this result, it could be concluded that the good sterilization effect on P. capsici might be obtained by applying electrolytic water.

  • PDF

Control Effects of 3-(4-Hydroxyphenyl)-propionic Acid Isolated Xenorhabdus nematophila K1 against Phytophthora Blight and Anthracnose of Red Pepper (Xenorhabdus nematophila K1 대사물질 3-(4-hydroxyphenyl)-propionic acid의 고추 역병과 탄저병에 대한 방제 효과)

  • Cheon, Wonsu;Kim, Doyeon;Kim, Yonggyun;Hong, Yong Pyo;Yi, Youngkeun
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.208-215
    • /
    • 2013
  • 3-(4-Hydroxyphenyl)-propionic acid (HPP) is a bacterial metabolite synthesized and released by an entomopathogenic bacterium Xenorhabdus nematophila K1. In this study, the control efficacy of HPP was tested against Phytophthora blight and anthracnose of red pepper plants. HPP suppressed mycelial growth of Phytophthora blight and anthracnose pathogens. Under natural sunlight condition, HPP maintained the antifungal activity on the diseases for at least twenty five days. The antifungal activity was not decreased even in the condition of soil-water. It was proved that HPP was able to penetrate the roots and travel upward of the red pepper plants. When HPP suspension was applied to soil rhizosphere before transplanting the red pepper seedlings or was regularly sprayed to the foliage of the plants with ten days interval, it resulted in significant reduction of the disease occurrences (Phytophthora blight and anthracnose) without any phytotoxicity. These results suggested that HPP can be developed to a systemic agrochemical against Phytophthora blight and anthracnose of red pepper plants.

Gibberellins-Producing Rhizobacteria Increase Endogenous Gibberellins Content and Promote Growth of Red Peppers

  • Joo Gil-Jae;Kim Young-Mog;Kim Jung-Tae;Rhee In-Koo;Kim Jin-Ho;Lee In-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.510-515
    • /
    • 2005
  • The growth of red pepper plants was enhanced by treatment with the rhizobacterium, Bacillus cereus MJ-1. Red pepper shoots showed a 1.38-fold increase in fresh weight (fw) and roots showed a 1.28-fold fw gain. This plant growth-promoting rhizobacterium (PGPR) has been reported to produce gibberellins (GAs). Other GAs-producing rhizobacteria, Bacillus macroides CJ-29 and Bacillus pumilus CJ-69, also enhanced the fw of the plants. They were less effective than B. cereus MJ-1, though. The endogenous GAs content of pepper shoots inoculated with MJ-1 was also higher than in shoots inoculated with CJ-29 or CJ-69. When inoculated with MJ-1, bacterial colonization rate of the roots was higher than that of roots inoculated with CJ-29 or CJ-69. These results support the idea that the plant growth-promoting effect of the bacteria also positively related with the efficiency of root colonization by the bacteria. In addition, we identified the major endogenous GAs of the red pepper as originating from both the early C-13 hydroxylation and the early non C-13 hydroxylation pathways, with the latter being the predominant pathway of GA biosynthesis in red pepper shoots.

A Trifloxystrobin Fungicide Induces Systemic Tolerance to Abiotic Stresses

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Lee, Seung-Hwan;Kim, In-Seon;Kim, Chul-Hong;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.101-106
    • /
    • 2012
  • Trifloxystrobin is a strobilurin fungicide, which possesses broad spectrum control against fungal plant diseases. We demonstrated that pre-treating red pepper plants with trifloxystrobin resulted in increased plant growth and leaf chlorophyll content compared with those in control plants. Relative water content of the leaves and the survival rate of intact plants indicated that plants acquired systemic tolerance to drought stress following trifloxystrobin pre-treatment. The recovery rate by rehydration in the drought treated plant was better in those pre-treated with trifloxystrobin than that in water treated plants. Induced drought tolerance activity by trifloxystrobin was sustained for 25 days after initial application. The trifloxystrobin treated red pepper plants also had induced systemic tolerance to other abiotic stresses, such as frost, cold, and high temperature stresses. These findings suggest that applying the chemical fungicide trifloxystrobin induced systemic tolerance to certain abiotic stresses in red pepper plants.

Disease Occurrence on Red-pepper Plants Surveyed in Northern Kyungbuk Province, 2007-2008 (2007-2008년도 경북 북부지역 고추산지의 병해 발생상황)

  • Seo, Ji-Ae;Yi, Young-Keun;Kim, Byung-Soo;Hwang, Jae-Moon;Choi, Seak-Won
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.205-210
    • /
    • 2011
  • The disease occurrence on red-pepper plants in relation to cultivation methods of the farmers and to the precipitation was investigated in northern Kyungbuk Province. The major diseases were mosaic, anthracnose and Phytophthora blight in 2007 and 2008. In 2008, mosaic was more severe than that in 2007, but the other diseases were milder than those in 2007. A negative correlation between the mosaic incidence in the harvesting season and the precipitation during May was recognized. On the other hand, there was a positive correlation between the severity of Phytophthora blight in September and the precipitation during August. The occurrence of anthracnose, Phytophthora blight and mosaic in the surveyed pepper plants grown in plastic houses were milder than those in fields, although the farmers cultivating red-pepper plants in the plastic houses were less than 5% in the northern Kyungbuk Province.

Control Effects of Benzylideneacetone Isolated from Xenorabdus nematophilla K1 on the Diseases of Redpepper Plants (Xenorhabdus nematophilla 유래물질 벤질리덴아세톤의 고추 병해 방제 효과)

  • Park, Su-Jin;Jun, Mi-Hyun;Chun, Won-Su;Seo, Ji-Ae;Yi, Young-Keun;Kim, Yong-Gyun
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • A monoterpenoid benzylideneacetone (BZA) is a bacterial metabolite isolated from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila K1. It was tested in this study the control efficacy of the metabolite against two major fungal diseases occurring in red-pepper plants. BZA exhibited significant antifungal activities against Phytophthora capsici and Colletotrichum acutatum. Under natural light conditions, the antifungal activity of BZA was maintained for more than sixty days. The antifungal activity of BZA was not lost even in soil because the incidence of Phytophthora blight against red-pepper plants was significantly reduced when the suspensions of P. capsici were poured to the rhizosphere soils mixed with BZA. Application of the BZA suspension spray to the fruit surface infected with C. acutatum significantly suppressed the disease occurrence of anthracnose on the red-pepper plants. These results suggest that BZA can be used to develop a promising agrochemical to control phytophthora blight and anthracnose of redpepper plants.

Growth Promotion in Red Pepper and Tomato Seedlings by Fermented Liquid Fertilizers and Elution of Mineral Nutrients by Extraction Methods (발효액비별 고추와 토마토 육묘 생육 촉진 및 추출방법별 무기양분 용출)

  • Jang, Se Ji;Kuk, Yong In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.130-141
    • /
    • 2020
  • The purpose of this study was to determine which fermented liquid fertilizer and application method yields the greatest amount of growth in red pepper (Capsicum annuum L.) and tomato (Lycopersicon esculentum MILL.) plants. Additionally, we investigated which extraction methods produce the most effective fertilizer with the highest levels of mineral nutrients. The liquid fertilizers used in this study were made from fish, bone and fish meal, red pepper leaves, and oil cake, and were extracted using fermentation or water and boiled water. In tomato plants, foliar-application of fermented fertilizer is known to promote more growth than application by drenching, regardless of the number of treatments (once or twice). In our studies, however, drenching with fertilizer promoted growth more effectively than foliar-application in red pepper plants. Studies in both tomato and red pepper have shown that the number of treatments does not significantly alter growth. Liquid fertilizers produced by a fermentation-extraction method promoted greater levels of growth in tomato compared to red pepper, and growth was greater when fertilizers were applied 20 (rather than 40) days post-sowing. Red pepper and tomato shoot fresh weight were affected more by fermented fertilizers than plant height 20 days post-sowing. In red pepper, we observed increased shoot fresh weight when using fermented liquid fertilizers with concentrations of 0.1% or greater. Tomato shoot fresh weight increased similarly in response to fermented fertilizer treatments at the same concentration levels, except those derived from fish. Fermented fish liquid fertilizer was only effective in increasing tomato shoot fresh weight in concentrations exceeding 1%. Red pepper and tomato shoot fresh weight also increased more than plant height in our studies using fermentation liquid fertilizers at 40 days after sowing. Red pepper fresh weight increased with application of bone + fish meal, red pepper leaf, and oil cake fertilizers at concentrations of 0.1%, but not with fish liquid fertilizer in concentrations under 0.5%. Shoot fresh weight in tomato increased with all liquid fertilizers. Growth in red pepper and tomato may be influenced by different kinds of fertilizers due to combinations of macro- and micro-nutrients, or specific macro-nutrients such as nitrogen, phosphoric acid, and potassium. The mineral nutrients found in fish, bone and fish meal, red pepper leaves, and oil cake were not easily extracted by fermentation; thus, liquid fertilizers made using water and boiled water methods more effectively promoted growth in red pepper and tomato due to the larger amounts of macronutrients eluted.

Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20

  • Lee, Min-Kyoung;Chauhan, Puneet Singh;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Park, Kee-Woong;Sa, Tong-Min
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • In order to exploit Methylobacterium oryzae CBMB20 as of plant growth promoting agent, different inoculation methods have been evaluated. The present study aimed to evaluate soil, foliar, and soil+foliar inoculations of M. oryzae CBMB20 to improve the growth, fruit yield, and nutrient uptake of red pepper (Capsicum annuum L.) under greenhouse conditions. The population range of green fluorescent protein (gfp)-tagged M. oryzae CBMB20 using the three inoculation methods was 2.5-2.9 ${\log}_{10}$ cfu/g in the rhizosphere and 4.5-6.0 ${\log}_{10}$ cfu/g in the phyllosphere of red pepper plants. Confocal laser scanning microscopy results confirmed the colonization of M. oryzae CBMB20 endophytically on leaf surface. Plant height, fruit dry weight, and total biomass were significantly higher ($p{\leq}0.05$) in all M. oryzae CBMB20 inoculation methods as compared to non-inoculated control. Furthermore, uptake of mineral nutrients such as N, P, K, Ca, and Mg in red pepper plants in all M. oryzae CBMB20 inoculation methods was higher than in non-inoculated control. Comparative results of inoculation methods clearly demonstrated that soil+foliar inoculation of M. oryzae CBMB20 lead to the highest biomass accumulation and nutrient uptake which may be due to its efficient colonization in the red pepper rhizosphere and phyllosphere.