Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.11.2011.0207

A Trifloxystrobin Fungicide Induces Systemic Tolerance to Abiotic Stresses  

Han, Song-Hee (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kang, Beom-Ryong (Jeonnam Agricultural Extension Service Center)
Lee, Jang-Hoon (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Lee, Seung-Hwan (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, In-Seon (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Chul-Hong (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Young-Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.28, no.1, 2012 , pp. 101-106 More about this Journal
Abstract
Trifloxystrobin is a strobilurin fungicide, which possesses broad spectrum control against fungal plant diseases. We demonstrated that pre-treating red pepper plants with trifloxystrobin resulted in increased plant growth and leaf chlorophyll content compared with those in control plants. Relative water content of the leaves and the survival rate of intact plants indicated that plants acquired systemic tolerance to drought stress following trifloxystrobin pre-treatment. The recovery rate by rehydration in the drought treated plant was better in those pre-treated with trifloxystrobin than that in water treated plants. Induced drought tolerance activity by trifloxystrobin was sustained for 25 days after initial application. The trifloxystrobin treated red pepper plants also had induced systemic tolerance to other abiotic stresses, such as frost, cold, and high temperature stresses. These findings suggest that applying the chemical fungicide trifloxystrobin induced systemic tolerance to certain abiotic stresses in red pepper plants.
Keywords
cold and freezing stresses; drought stress; high temperature stress; induced systemic tolerance; plant growth promotion;
Citations & Related Records
연도 인용수 순위
1 Abdul Jaleel, C., Kishorekumar, A., Manivannan, P., Sankar, B., Gomathinayagam, M., Gopi, R., Somasundaram, R. and Panneerselvam, R. 2007a. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications. Plant Growth Regul. 53:7-16.   DOI
2 Abdul Jaleel, C., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R. and Panneerselvam, R. 2007b. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloid Surface. B 60:201-206.   DOI   ScienceOn
3 Park, J. Y., Yang, S. Y., Kim, Y. C., Kim, J.-C., Dang, Q. L., Kim, J. J. and Kim, I. S. 2011. Antiviral peptide from Pseudomonas chlororaphis O6 against Tobacco Mosaic Virus (TMV). J. Korean Soc. Appl. Biol. Chem. 55:89-94.
4 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819.   DOI   ScienceOn
5 Reuveni, M. 2000. Efficacy of trifloxystrobin (Flint), a new strobilurin fungicide, in controlling powdery mildews on apple, mango and nectarine, and rust on prune trees. Crop Prot. 335-341.
6 Ronchi, A., Farina, G., Gozzo, F. and Tonelli, C. 1997. Effect of a triazole fungicide on maize plant metabolism: modifications of transcript abundance in resistance-related pathways. Plant Sci. 130:51-62.   DOI   ScienceOn
7 Schreiber, K. and Desveaux, D. 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol. J. 24:245-268.   DOI   ScienceOn
8 Sticher, L., Mauch-Mani, B. and Metraux, J.-P. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270.
9 Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N., Metraux, J.-P. and Mauch-Mani, B. 2005. Dissecting the ${\beta}$-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987-999.   DOI   ScienceOn
10 Wu, Y. and von Tiedemann, A. 2001. Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pestic. Biochem. Physiol. 71:1-10.   DOI   ScienceOn
11 Yang, J., Kloepper, J. W. and Ryu, C.-M. 2010. Rhizosphere bacteria help plants tolerance abiotic stress. Trends Plant Sci. 46:1-3.
12 Yang, J. W., Yu, S. H. and Ryu, C.-M. 2009. Priming of defenserelated genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25:389-399.   DOI   ScienceOn
13 Graham, J. and Myers, M. E. 2011. Soil application of SAR inducers imidacloprid, thiamethoxam, and acibenzolar-Smethyl for citrus canker control in young grapefruit trees. Plant Dis. 95:725-728.   DOI   ScienceOn
14 Grossmann, K. and Retzlaff, G. 1997. Bioregulatory effects of the fungicidal strobilurin kresoxim-methyl in wheat (Triticum aestivum). Pestic. Sci. 50:11-20.   DOI
15 Han, S. H., Kim, C. H., Lee, J. H., Kim, I. S. and Kim, Y. C. 2010. Induced drought tolerance by the insecticide imidacloprid in plant. Korean J. Environ. Agric. 29:159-164.   DOI   ScienceOn
16 Herms, S., Seehaus, K., Koehle, H. and Conrath, U. 2002. A strobilurin fungicide enhances the resistance of tobacco against Tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Plant Physiol. 130:120-127.   DOI   ScienceOn
17 Kim, Y. C., Leveau, J. McSpadden Gardener, B. B., Pierson, E. A., Pierson III, L. S. and Ryu, C-M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555.   DOI   ScienceOn
18 Lin, K.-H. R., Tsou, C.-C., Hwang, S.-Y., Chen, L.-F. O. and Lo, H.-F. 2005. Paclobutrazol pre-treatment enhanced flooding tolerance of sweet potato. J. Plant Physiol. 163:750-760.
19 Manivannan, P., Jaleel, C. A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R. and Panneerselvam, R. 2007. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids Surface. B. 57:69-74.   DOI   ScienceOn
20 Munne-Bosch, S. and Penuelas, J. 2003. Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758-766.   DOI
21 Abdul Jaleel, C., Gopi, R., Manivannna, P. and Panneerselvam, R. 2007c. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiol. Plant 29:205-209.   DOI
22 Abdul Jaleel, C., Gopi, R., Manivannan, P., Gomathinayagam, M., Murali, P. V. and Panneerselvam, R. 2008. Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pestic. Biochem. Phys. 90:135-139.   DOI   ScienceOn
23 Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Harmer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manag. Sci. 58:649-662.   DOI   ScienceOn
24 Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075.   DOI   ScienceOn
25 Gonias, E. D., Oosterhuis, D. M. and Bibi, A. C. 2008. Physiological response of cotton to the insecticide imidacloprid under high-temperature stress. J. Plant Growth Regul. 27:77-82.   DOI