• Title/Summary/Keyword: Red sea bream (Pagrus major)

Search Result 57, Processing Time 0.028 seconds

Total Ammonia Nitrogen Excretion Rates and Feces Production Rates as an Index for Comparing Efficiency of Dietary Protein Utilization of Offsprings from Selected Korean Strain, Cultured Japanese Strain and Their Intraspecific Hybrid Strain of Juvenile Red Sea Bream, Pagrus major (한국산 선발 계통, 일본산 양식 계통 그리고 이들 두 계통간 잡종 계통 참돔 치어의 총 암모니아성 질소 배설률 및 분 배출률을 통한 사료내 단백질 이용 효율 비교)

  • Oh, Sung-Yong;Noh, Choong-Hwan;Hong, Kyung-Pyo;Kim, Jong-Man
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.415-423
    • /
    • 2004
  • An experiment was conducted to investigate the differences of total ammonia nitrogen (TAN) excretion rates and feces production rates among the offsprings from cultured Japanese strain (JJ, mean BW; $17.1{\pm}0.1g$), intraspecific hybrid strain between cultured Japanese and selected Korean strain (JK, mean BW: $17.1{\pm}0.1g$) and selected Korean strain(KK, mean BW: $21.5{\pm}0.1g$) of red sea bream in order to compare their dietary protein utilization efficiency. Fish were hand-fed with a commercial diet containing 46.7% crude protein for 2 weeks, three times daily 09:00, 13:00 and 17:00. After daily feeding, the TAN excretion rates reached peaks of 49.03, 58.75 and 36.26mg/kg fish/hr for the JJ, JK and KK strain, respectively, during the daytime. The value of the KK strain was significantly lower than that of the JJ and JX shuin (P<0.05), however daily TAN excretion rates of the JJ, JK and KK strain were not different (P>0.05). When fish were fed at satiation after 4 days of starvation, TAN excretion rates reached the maximum values 4 hours after the feeding fur the KK (31.23 mg/kg fish/hr) and 6 hours after the feeding fur the JJ (44.19 mg/tg fish/hr) and JK strain (41.70 mg/kg fish/hr). After 3 days of starvation, the daily endogenous TAU excretion rates (ETE) for the JJ, JK. and KK strain were 286.91, 215.66 and 179.29mg/kg fish/day, respectively. The value of the KK strain was lower than that of the JJ and JK strain (P<0.05). The total feces production rates of the JJ, JK and KK strain were not significantly different, however the proportions of feces production rates by time for the JJ, JK and KK strain were different (P<0.05). As overall results, efficiency of dietary protein utilization of JJ, JK and KK seems to be different and KK strain could offer a desirable option for aquaculture purpose.

Morphological changes during starvation of larvae of red sea bream, Pagrus major (참돔 Pagrus major, 자어(仔魚)의 기아시(飢餓時) 형태(形態) 변화(變化))

  • Myoung, Jung-Goo;Kim, Jong-Man;Kim, Yong-Uk
    • Korean Journal of Ichthyology
    • /
    • v.2 no.2
    • /
    • pp.138-148
    • /
    • 1990
  • The influence of starvation on morphological change of the red sea bream larvae was examined at Song-ji fish hatchery, Tongyong-Gun, Kyongnam Provice in July 1988. The results obtained are as follows: 1) The larvae of red sea bream began to feed on rotifers in 2 days after hatching. In case of non-feeding, all of the larvae died in 5 days after hatching and the larvae which feeding delayed 1 and 2 days from normal first feeding schedule also died 100 in 6 days after hatching. 2) With the exhaustion of the yolk, the total length, body length, myotome height and gut height of unfed larvae decreased. 3) The ratio of height to myotome height in unfed larvae has declined most rapidly compare to other demensions while starving. At 5 days after hatching, the ratios of these of starving larvae and fed larvae were 0.306 and 0.010, respectively. 4) The morphology of starving larvae at 6 days after hatching are characterized as sharpened jaw, projected edge of lower part of clavicle and slender gut.

  • PDF

Growth and Blood Characteristics of Red Sea Bream Pagrus major by Starvation and Stocking Density during Red Tide (적조발생시기 참돔의 절식과 사육밀도에 따른 성장과 혈액성상)

  • Kim, Won-Jin;Lee, Jeong-Yong;Shin, Yun-Kyung;Won, Kyoung-Mi
    • Korean Journal of Ichthyology
    • /
    • v.30 no.4
    • /
    • pp.194-204
    • /
    • 2018
  • In order to minimize the damage on the red sea bream Pagrus major by a harmful dinoflagellate Cochlodinium polykrikoides, we investigated the effect of feeding, starvation and stocking density on the survival rate, growth, growth restoration and physiological response of P. major exposure to C. polykrikoides. The experimental groups were divided into three groups such as F-HD (feeding and high density with $6.4kg/m^3$), S-HD (starvation and high density with $6.4kg/m^3$) and S-LD (starvation and low density with $3.2kg/m^3$) according to stocking density and starvation in marine cage ($11m{\times}11m{\times}5m$). The F-HD was fed throughout the experiment for 9 weeks, whereas S-HD and S-LD were not fed for 5 weeks and then refeeding for 4 weeks. Survival rate was the lowest in F-HD (85.5%) and S-LD was the highest (97.3%). The growth rates of S-HD and S-LD were significantly lower than F-HD during starvation period for 4 weeks, but rapidly recovered after feeding. The nutritional status such as ALB, TP, TCH, TG were similar to tendency of growth data. Ht, Hb, AST, ALT and GLU levels were significantly higher in the F-HD than in the starvation groups at the same time (in 3 week) during starvation period. But starvation groups did not differ during starvation period. As a result, F-HD is more sensitive to stress than S-HD and S-LD. Thus, during C. polykrikoides bloom period, starvation and stocking density control can help survival and growth restoration of the red sea bream.

Comparison of pathogen detection from wild and cultured olive flounder, red sea bream, black sea bream and black rockfish in the coastal area of Korea in 2010 (2010년 한국 연근해 자연산과 양식산 넙치, 참돔, 감성돔, 조피볼락의 병원체 비교)

  • Park, Myoung Ae;Do, Jeung-Wan;Kim, Myoung Sug;Kim, Seok-Ryel;Kwon, Mun-Gyeong;Seo, Jung Soo;Song, Junyoung;Choi, Hye-Sung
    • Journal of fish pathology
    • /
    • v.25 no.3
    • /
    • pp.263-270
    • /
    • 2012
  • This study surveyed for the prevalence of parasites, bacteria and viruses in four fish species, olive flounder (Paralichthys olivaceus), red sea bream (Pagrus major), black sea bream (Acathopagrus schlegeli) and black rockfish (Sebastes schlegeli) in 2010. The survey was aimed to compare the pathogens detected from wild and cultured fish for an epidemiological study. Anisakis sp. was predominantly detected from wild olive flounder and red sea bream (58.6% and 41.7% respectively), but not from the cultured fishes, suggesting anisakid infection is rare in cultured fish. The wild fish get in contact with the anisakids through their prey such as small fishes or crustaceans which carry the anisakids; whereas the cultured fish are fed with formulated feed, free of anisakids. Bacterial detection rates from the wild fishes examined in the study were lower than those of cultured fishes. Vibrio sp. dominated among detected bacterial population in cultured olive flounder (18%). Since vibriosis is known as a secondary infection caused by other stressful factors such as parasitic infections, handling and chemical treatment, it seems that cultured olive flounder are exposed to stressful environment. Viruses diagnosed in the study showed difference in distribution between wild and cultured fishes; hirame rhabdovirus (HRV) (0.1%) and lymphocystis disease virus (LCDV) (3.9%) were detected in the cultured olive flounder, but not in the wild fish, and marine birnavirus (MBV) (1.7%) and red sea bream iridovirus (RSIV) (3.2%) were detected from the wild and cultured red sea bream, respectively. From the survey conducted, it can be concluded that even though some pathogens (Trichodina sp., Microcotyle sp., etc.) are detected from both the wild and cultured fish, pathogens such as Anisakis sp., Vibrio sp. and LCDV showed difference in distribution in the wild and cultured host of same fish species and this can be attributed to their environmental condition and feeding.

Growth Performance of Offspring from Selected and Non-Selected Brood Line of Red Sea Bream, Pagrus major

  • Noh, Choong-Hwan;Hong, Kyung-Pyo;Myoung, Jung-Goo;Kim, Jong-Man
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.36-36
    • /
    • 2003
  • In the present study, growth performances of the offspring from selected brood line were compared to those of the offspring from non-selected brood line of red sea bream. Offspring groups were mass produced separately from two brood lines, selected and non-selected Korean strain. Selected brood line have been selected by fish size for four generations (upper 5∼30% per generation) and non-selected brood line is the second generation of wild population at south sea in Korea. There's no significant difference in body length between offspring from selected and non-selected brood line during early growing stage (until 96-days old). However, offspring from selected brood line had superior body weight growth than offspring from non-selected brood line. At sea cages rearing trials with communal stocking, Offspring from selected brood line showed significantly better performance in body weight, body length, weight gain, specific growth rate and feed consumption (but not in feed conversion ratio) than offspring from non-selected brood line. At 24 months old, offspring from selected brood line grew faster 1.10 times in body length and 1.41 times in body weight than offspring from non selected brood line. The response to selection when compared to a non-selected line is on average of 10% in weight per generation at 24 months old.

  • PDF

Survey of Sanitary Indicative Bacteria and Pathogenic Bacteria in Fish Farms on the Southern Coast of Korea (남해안 어류양식장 해수 및 양식어류의 위생지표세균 및 병원성세균 조사)

  • Son Kwang-Tae;OH Eun-Gyoung;LEE Tae-Seek;LEE Hee-Jung;KIM Poong-Ho;KIM Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.6
    • /
    • pp.359-364
    • /
    • 2005
  • The distributions of sanitary indicative bacteria and pathogenic bacteria in seawater and four species of farmed fishes, including oliver flounder (Paralichthys olivaceus), black rock fish (Sebastes schlegeli), red sea bream (Pagrus major) and sea bass (Lateolabrax japonicus), collected at fish farms located in the southern coastal area of Korea were investigated from May to October in 2004. The detection rates of fecal coliform and Entirococcus spp. of sanitary indicative bacteria in all samples were $38.9\%$ and $23.8\%$, respectively. The occurrence of fecal coliform was highest of $58.3\%$ in Busan, Geoje and Wando area, followed Yeosu $33.3\%$, Jeju $12.5\%$, Tongyeong $11.1\%$. The occurrence of Enterococcus spp. was highest In Wando area ($45.8\%$), followed by Yeosu ($33.3\%$), Tongyeong ($22.2\%$), Busan ($16.7\%$), Geoje and Jeju ($12.5\%$). The detection rate of fecal coliform was higher than that of Enterococcus spp., except in the Tongyeong area. There was no difference in the detection rate of fecal coliform from May to October, but the detection rate of Enterococcus spp. increased with seasonal warming seawater temperature. Among the pathogenic bacteria, the detection rate of Vibrio alginolyticus ($49.2\%$) in all samples was highest, followed by V. parahaemolyticus ($36.5\%$), Staphylococcus aureus ($6.3\%$), Salmonella sp. ($2.4\%$). However, V cholerae, V. vulnificus and Shigella sp. were not detected in all tested samples. The detection rates of V. parahaemolyticus and V. alginolyticus increased with seasonal warming seawater temperature from May to August.

Monitoring of Pathogens Detected in Cultured Fishes of Gyeongnam in 2018 (2018년 경남 양식어류에서 검출된 병원체 모니터링)

  • Kang, Ga Hyun;Cha, Seung Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.539-546
    • /
    • 2019
  • The major cultured marine fishes in sea off the coast Gyeongsangnam-do Province, South Korea, were assessed and included 9.3% rockfish Sebastes schlegelii, 7.8% red seabream Pagrus major, and 2.1% rock bream Oplegnathus fasciatus. The number of insurance payments related to disease mortality in cultured fish in 2017 was fourfold that in 2016. Economic loss in aquaculture due to disease in cultured fish is high and represents an important inhibitory factor affecting marine fishery productivity. In 2018, diseases led to severe production losses in several aquaculture species: 40.0% in rockfish, 11.4% in olive flounder Paralichthys olivaceus, 10.0% in filefish Thamnaconus modestus, and 9.3% in red seabream. Fish-parasitic pathogens such as Microcotyle sebastis, Alella spp., and Dactylogyrus spp. enter mainly via the gills and skin surface. Among bacterial pathogens, Vibrio species were most common, with Vibrio harveyi being the dominant species causing infections in these fishes. The bacterium Lactococcus garvieae is thought to exhibit host specificity in fish. The fish species in the present study exhibited a higher tendency for infection by heterologous pathogens than by a single pathogen; therefore, it is necessary to devise new strategies for treating diseases in cultured fish.

Sex Differentiation of the Gonad in Red Sea Bream, Pagrus major with Cultured Condition (양식산, 참돔 Pagrus major의 생식소 성분화)

  • 김형배
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.529-546
    • /
    • 1998
  • Gonadal part that developed by indifferentiation period for 6 months after hatching is made as gonad and fat body. These gonad are thin semi-transparant and undistinguished germ cell. Germinal epithelium is distinguished by development of gonad epithelial tissue from 7 months after hatching. Sex differentiation is begun by oogonia develoment at 8 months after hatching. Primary oocytes grow over germinal epithelium of gonadal cavity, at 9 months after hatching, gonadal cavity become ovarian cavity as they increasing. As soon as oocytes at 13 months after hatching are filled with the whole part of gonad, degeneration of oocyte is begun. And then, gonad has cavity tissue, a small number of oocyte are located in gonadal cavity. At 15 months after hatching, new primary oocyte develop and cavity of ovarian tissue in the central of ovarian cavity. Spermatogonia multiplicate and cavity tissue consist of testicular tissue. These gonad become hermaphrodite and then ditermine the sex of female and male. These results show the red sea bream is juvenile hermaphrodite and undif-ferentiated gonochoristic teleost. Male and female differentiation type of gonad is divided in undifferentiation stage, oogonia-like stage, ovary-like stage, ovary development stage, hermaphroditic testis stage, hermaphroditic ovary stage, and testis development stage. Undifferentiation stage is continued total lenth 18cm at 13 months after hatching. ovary-like stage is continued total length 11~18cm at 13 months after hatching. Ovary-like stage is continued total length 14~26cm at 10~14 months after hatching. Ovary development stage begins from total length 20cm, 14 months after hatching. At 20 months after hatching, 44 percent of total sampled individuals had ovary. Hermaphroditic ovary stage first begins total length 19~20 cm at 15 months after hatching, but it is not observed total length 28~29cm at 20months after hatching. Hermaphroditic testis stage first begins total length 21~22cm at 20months after hatching and is continued for 20months. Testis development stage first begins total length 20~21cm at 20 months after hatching, and is occupied 33 percent total length 28~29cm at 20 months. The beginning of sex differentiation more than 50 percent is from total length 16cm at 11 months after hatching. Sex determination begins total length 20cm, 14months after hatching in female and total length 20cm, 15 months after hatching in male. Sex determination more than 50 percent begins total length 23cm,, 17 months after hatching. Undifferentiated gonadal part of red sea bream consist gonad and fat body. As differentiation is going on and gonad is growing, fat body shrinks. This appearence is showed the same tendency in 3-year old red sea bream. 1.9mm larvae after hatching grow about 19mm larvae for 47 days. The relationship between the total length and body weight of larvae and juveniles in $BW=4.45{\times}10^{-6}TL^{3.4718}$ r=0.9820. Fishes in cage culture grow to maximum total length 28.4cm. The relationship between the total length and body weight of these fishes is $BW=2.36{\times}10^{-2}TL^{2.9180}$, r=0.9971. Undifferentiated gonadal part of red sea bream consist gonad and fat body. As differentiation is going on and gonad is growing, fat body shrinks.

  • PDF

Metabolism of Dietary Carotenoids and Effects to Improve the Body Color of Cultured Flounder and Red sea bream (양식 넙치, 참돔의 사료 Carotenoids 대사와 체색개선에 미치는 영향)

  • HA Bong-Seuk;KANG Dong-Soo;KIM Jong-Hyun;CHOI Ok-Soo;RYU Ho-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.91-101
    • /
    • 1993
  • To investigate the effects on pigmentation and carotenoid metabolism of red sea breams Pagrus major and flounders Paralichithys olivaceus by the supplemented carotenoids, fishes wire fed the diet each containing ${\beta}$-carotene, lutein ester, astaxanthin, astaxanthin monoester, astaxanthin diester and ${\beta}$-apo-8'-carotenal for 8 weeks. Carotenoids in the integuments were analyzed. In cultured red sea breams with supplemented carotenoids, carotenoid deposition and pigmentation were higher in order of astaxanthin diester group, ${\beta}$-apo-8'-carotenal group and astaxanthin monoester group. The main carotenoids of red sea breams were astaxanthin diester, tunaxanthin and ${\beta}$-carotene. Difference in the content of astaxanthin diester and ${\beta}$-carotene was observed from natural and cultured red sea breams. In cultured flounders with supplemented carotenoids, carotenoid deposition and pigmentation were higher in order of ${\beta}$-carotene group and lutein ester group. The main carotenoids of flounders were zeaxanthin and lutein. Difference in lutein and ${\beta}$-carotene contents was observed from the natural and cultured flounders. Based on the contents and composition of carotenoids in each group after feeding experimental diet, carotenoid metabolism in red sea breams were presumed the reductive metabolic pathway, astaxanthin to tunaxanthin, and likewise, in flounders, lutein to tunaxanthin.

  • PDF

Antimicrobial Susceptibility of Escherichia coli Isolated from Fish Farms on the Southern Coast of Korea (남해안 어류양식장에서 분리된 Escherichia coli에 대한 항균제 감수성)

  • Son, Kwang-Tae;Oh, Eun-Gyoung;Park, Kun-Ba-Wui;Kwon, Ji-Young;Lee, Hee-Jung;Lee, Tae-Seek;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.322-328
    • /
    • 2009
  • Three-hundred and sixteen Escherichia coli strains from seawater, and a variety of farmed fishes, including oliver flounder (Paralichthys olivaceus), black rock fish (Sebastes schlegeli), red sea bream (Pagrus major) and sea bass (Lateolabrax japonicus) between May to October in 2004, were tested by agar dilution method to determine their susceptibility patterns to 17 antimicrobial agents. Overall, 92.1% of Escherichia coli isolates from samples showed antimicrobial resistance to at least one antimicrobial agent and the multiple resistance was seen in 173 isolates (54.7%). The resistance of E. coli isolates to tetracycline (74.1%) was highest, followed by cephalothin (69.9%), doxycycline (66.5%), streptomycin (47.2%), ampicillin (46.2%), cefazolin (31.6%), enrofloxacin (31.0%). norfloxacin (28.2%). The most frequent resistance pattern was TE-D-CF-CIP-ENO-NOR-AM-S-C-SXT-AmC-CZ (14.7%), followed by CF (6.2%), TE (5.1%), TE-CF (4.5%) in 177 isolates from fishes and TE-D-CF (7.2%) followed by TE-D-CF-S (5.8%), CF and TE-D-S (3.6%) in 139 isolates from seawater.