• Title/Summary/Keyword: Red emitting OLED

Search Result 99, Processing Time 0.019 seconds

Yellow, Orange, and Red Phosphorescent Materials for OLED Lightings (OLED 조명을 위한 Yellow, Orange, Red 인광 재료)

  • Jung, Hyocheol;Park, Young-Il;Kim, Beomjin;Park, Jongwook
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-250
    • /
    • 2015
  • Organic light-emitting diode (OLED) research field has received great attention from academic and industrial circles. Recently, The technical feature of OLEDs is more and more attractive in the lighting market, including area emission characteristics different from other existing light sources. Features are environmentally friendly and efficient use of energy, large area, ultra-light weight, and ultrathin shape, etc. Furthermore, OLED light became the mainstream of next-generation lighting to replace the light emitting diode (LED) fluorescent light. This article summarizes phosphorescent emitting materials that have been applied to white OLEDs. In particular, the chemical structures and device performances of the important yellow, orange, and red phosphorescent emitting materials is discussed. Systematic classification and understanding of the phosphorescent materials can aid the development of new light-emitting materials.

Emission Characteristics of Red OLEDs in the Emitting Layer Position Doped with DCM2 and Rubrene (DCM2와 Rubrene이 첨가된 발광층 위치에 따른 적색 OLED의 발광 특성)

  • Jung, Haeng-Yun;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.664-668
    • /
    • 2011
  • In this study, we have fabricated the red OLED (organic light emitting diode). The basic device structure is ITO/hole transporting layer, TPD(500 $\AA$)/red emitting layer, Alq3 doped with DCM2:rubrene(20 $\AA$)/electron transporting layer, Alq3(M) (500 $\AA$-M $\AA$)/LiF(15 $\AA$)/Al(1,000 $\AA$). The thickness of electron transporting layer(500 $\AA$-M $\AA$) changed 0, 20, 40, 60 $\AA$. Turn on voltage of the red OLED was 5 V, 6 V, 6.5 V and 7.5 V, respectively with electron transfer layer changed ratio. Luminance of red OLED was 4,504, 1,840, 1,490 and 1,130 cd/$m^2$, respectively. Optimized electron transfer layer position changed ratio of the red OLED was 0 $\AA$.

A Study on the Fabrication and Characteristic Analysis of Organic Light Emitting Device using BAlq (BAlq를 적용한 유기발광소자의 제작 및 특성 분석에 관한 연구)

  • 오환술;황수웅;강성종
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-88
    • /
    • 2004
  • BAlq was fabricated as for hole blocking layer in the OLED devices to investigate its electrical and optical characteristics. Device structure was ITO/$\alpha$ -NPD/EML/BAlq/Alq3/Al:Li using TYG-201, DPVBi (4, 4 - Bis (2, 2 - diphenylethen-1 - yls) - Biphenyl), Alq and DCJTB (4-(dicyanomethylene)-2- (1-propyls)6-methy 4H-pyrans) as green emitting material, blue emitting material, host material for red emission and red emitting guest material respectively. The OLED device showed optimum working voltage and electron density at 600 cd/$m^2$ when thickness of BAlq is 25$\AA$ for RGB OLED devices while their efficiencies are better at 50$\AA$ of BAlq. Red and blue color OLEDs also fabricated using 30$\AA$ thickness of BAlq and compared with those without BAlq layer. BAlq was more effective in electrical properties such as working voltage, current density and efficiency of red OLED than blue and green ones. This study describes that 30$\AA$ is optimum thickness of BAlq for best performance of full color OLED devices when using BAlq as a hole blocking material.

Luminescent characteristics of OLED doped with DCM2 and rubrene (Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성)

  • 박용규;성현호;김인회;조황신;양해석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF

Transient characteristics of top emission organic light emitting diodes with red phosphorescent (적색 인광 도판트를 이용한 Top emission OLED의 Transient 특성)

  • Lee, Chan-Jae;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.153-156
    • /
    • 2005
  • In this study, we have investigated transient properties of top emission organic light emitting diode (OLED) with a red electrophosphorescent dopant. The emission spectrum shows a strong peak at 620 nm accompanied with a small peak at 675 nm in the red region. Time evolution of electrophosphorescence reveals a decay time of 703 ms at a voltage pulse of 5 V in a device with an emitting area of 20 $mm^2$. Rise and delay times vary from 450 to 14 ms and 73 to 3 ms, respectively, as the voltage amplitude increases from 4.5 to 10 V. These results are compared with the red emitting device without an electron injection layer.

  • PDF

Improvement of Color Purity Using Hole Blocking Layer in Hybrid White OLED (Hole Blocking Layer 사용에 따른 하이브리드 백색 OLED의 색순도 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.837-840
    • /
    • 2014
  • Novel materials of $Zn(HPB)_2$ and Ir-complexes were respectively synthesized as blue or red emitting material. White Organic Light Emitting Diodes (OLED) were fabricated by using $Zn(HPB)_2$ for a blue emitting layer, Ir-complexes for a red emitting layer and $Alq_3$ for a green emitting layer. White OLED was fabricated by using double emitting layers of $Zn(HPB)_2$ and $Alq_3:Ir$-complexes, and hole blocking layer of BCP. We also varied the thickness of BCP. When the thickness of BCP layer was 5 nm, white emission was achieved. We obtained a maximum luminance of $3,500cd/m^2$. The CIE coordinates was (0.375, 0.331). From this study, we could propose that the hybrid structure is efficient in lighting application of white OLED by improvement of color purity.

The Luminescent Properties of Red OLED Devices Doped with Two Dopants (2원 첨가 적색 OLED 소자의 발광특성)

  • Kim, Kyong-Min;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.531-535
    • /
    • 2007
  • To invest the luminescent characteristics of red light emitting OLED device, a dual dopant system was incorporated into the emitting layer. The multiple layer OLED device structure was $ITO(1500\;{\AA})/HIL(200\;{\AA})/a-NPD(600\;{\AA})/EML(300\;{\AA})/Alq_3(200\;{\AA})/LiF(7\;{\AA})/Al(1800\;{\AA})$. The concentrations of the rubrene dopant were tested at 0 vol.%, 3 vol.%, 6 vol.% and 9 vol.%. The maximum device efficiency and life time were obtained at the rubrene dopant concentration of 6 vol.%. Emission spectrum and color coordinate of devices showed no relationship with rubrene dopant concentration. Experiment results show that rubrene dopant absorbs energy from $Alq_3$ host and transfer it to RD1 dopant acting as an energy intermediate and influencing the device efficiency, finally the red light is emitted from the RD1 dopant.

Improvement of Efficiency Varying Ratio in Hybrid White OLED (도핑 비율에 따른 하이브리드 백색 OLED의 효율 향상에 관한 연구)

  • Kim, Nam-Kyu;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.571-575
    • /
    • 2014
  • We synthesized new materials of $Zn(HPB)_2$ and Ir-complexes as blue or red emitting material. We fabricated white Organic Light Emitting Diodes (OLED) by using $Zn(HPB)_2$ for the blue emitting layer, Ir-complexes for the red emitting layer and $Alq_3$ for the green emitting layer. We fabricated white OLED by using double emitting layers of $Zn(HPB)_2$:Ir-complexes and $Alq_3$. The doping rate of Ir-complexes was varied, such as 0.2%, 0.4%, 0.6%, and 0.8%, respectively. When the doping rate of $Zn(HPB)_2$:Ir-complexes was 0.6%, white emission was achieved. The Commission Internationale de l'Eclairage (CIE) coordinates of the white emission was (0.322, 0.312).

Optical and Electrical Properties of Two-Wavelength White Tandem Organic Light-Emitting Diodes Using Red and Blue Materials (적색과 청색 물질을 사용한 2파장 방식 백색 적층 OLED의 광학 및 전기적 특성)

  • Park, Chan-Suk;Jua, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.581-586
    • /
    • 2015
  • We studied optical and electrical properties of two-wavelength white tandem organic light-emitting diodes using red and blue materials. White fluorescent OLEDs were fabricated using Alq3 : Rubrene (3 vol.% 5 nm) / SH-1 : BD-2 (3 vol.% 25 nm) as emitting layer (EML). White single fluorescent OLED showed maximum current efficiency of 9.7 cd/A, and tandem fluorescent OLED showed 18.2 cd/A. Commission Internationale de l'Eclairage (CIE) coordinates of single and tandem fluorescent OLEDs was (0.385, 0.435), (0.442, 0.473) at $1,000cd/m^2$, respectively. White hybrid OLEDs were fabricated using SH-1 : BD-2 (3 vol.% 10 nm) / CBP : $Ir(mphmq)_2(acac)$ (2 vol.% 20 nm) as EML. White single hybrid OLED showed maximum current efficiency of 7.8 cd/A, and tandem hybrid OLED showed 26.4 cd/A. Maximum current efficiency of tandem hybrid OLED was more twice as high as single OLED. CIE coordinates of single hybrid OLED was (0.315, 0.333), and tandem hybrid OLED was (0.448, 0.363) at $1,000cd/m^2$. CIE coordinates in white tandem OLEDs compared to those for single OLEDs observed red shift. This work reveals that stacked white OLED showed current efficiency improvement and red shifted emission than single OLED.

Emission Characteristics of White Organic Light-Emitting Diodes Using Ultra Wide Band-gap Phosphorescent Material (Ultra Wide Band-gap 인광체를 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Choo, Dong Chul;Kang, Eu-Seok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.910-915
    • /
    • 2012
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. The best blue emitting OLED and red emitting OLED characteristics were obtained at a concentration of 12 vol.% FIrpic and 1 vol.% $Bt_2Ir$(acac) in UGH3, respectively. And the optimum thickness of the total emitting layer was 25 nm. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with red/blue/red, blue/red, red/blue and co-doping emitting layer structures were fabricated using a host-dopant system. In case of white PHOLEDs with co-doping structure, the best efficiency was obtained at a structure UGH3: 12 vol. % FIrpic: 1 vol.% $Bt_2Ir$(acac) (25 nm). The maximum brightness, current efficiency, power efficiency, external quantum efficiency, and CIE (x, y) coordinate were 13,430 $cd/m^2$, 40.5 cd/A, 25.3 lm/W, 17 % and (0.49, 0.47) at 1,000 $cd/m^2$, respectively.