• Title/Summary/Keyword: Red PhOLED

Search Result 4, Processing Time 0.017 seconds

High Efficiency Red Phosphorescent Organic Light Emitting Devices Using the Double Dopant System (이중 도핑을 이용한 고효율 적색 인광 유기발광소자)

  • Jang, J.G.;Shin, H.K.;Kim, W.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.351-352
    • /
    • 2008
  • A new high efficient red PhOLED using a host of $Bebq_2$ and double dopants of $(pq)_2$Ir(acac) and SEC-R411 have been fabricated and evaluated. The device doubly doped with $(pq)_2$Ir(acac) and SFC-R411 showed the current efficiency improvement of 22% under a luminance of 10000 cd/$m^2$ in comparision with the device singly doped with SFC-R411. The luminance, current efficiency and central wavelength of the doubly doped device were 9300 cd/$m^2$ at 7V, 11.1 cd/A under a luminance of 10000 cd/$m^2$ and 625 nm, respectively.

  • PDF

Fabrication and Characterization of Red OLED on the Plastic Substrate (플라스틱 기판상에 적색 OLED 제작과 특성 연구)

  • Jeong, Jin-Cheol;Kim, Hyeong-Seok;Kim, Won-Ki;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.15-19
    • /
    • 2009
  • A high efficient organic red light emitting device with structure of DNTPD/TAPC/$Bebq_2$ :[$(pq)_2Ir(acac)$, SFC-411]/SFC-137 was fabricated on the plastic substrate, which can be applied in the fields of flexible display and illumination. In the device structure, N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD] as a hole injection layer and 1,1-bis-(di-4-tolylaminophenyl) cyclohexane [TAPC] as a hole transport were used. Bis(10-hydroxybenzo[h]quinolinato) beryllium complex [$Bebq_2$] was used as a light emitting host material. The host material, $Bebq_2$ was doubly doped with volume ratio of 7% iridium(III)bis-(2-phenylquinoline)acetylacetonate[$(pq)_2$Ir(acac)] and 3% SFC-411[red phosphor dye coded by the proprietary company]. And then, SFC-137 was used as an electron transport layer. The luminous intensity and current efficiency of the fabricated device were $22,780\;cd/m^2$ at 9V and 17.3 cd/A under $10,000\;cd/m^2$, respectively. The maximum current efficiency of the device was 22.4cd/A under $580\;cd/m^2$.

  • PDF

Red Organic LED with Dual Dopants of Rubrene and GDI 4234 (Rubrene/GDl 4234 Dual 도펀트를 이용한 적색 유기발광다이오드)

  • Jang, Ji-Geun;Kang, Eui-Jung;Kim, Hee-Won;Shin, Se-Jin;Gong, Myoung-Sun;Lim, Sung-Kyoo;Oh, Myoung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.309-310
    • /
    • 2005
  • In the fabrication of high performance red organic light emitting diode, 2-TNA TA [4,4',4" -tris (2-naphthylphenyl- phenylamino)-triphenylamine] as hole injection material and N PH [N,N'-bis (1-naphthyl) -N,N' -diphenyl-1, 1'-biphenyl-4,4'- diamine] as hole transport material were deposited on the ITO (indium tin oxide)/glass substrate by vacuum evaporation, And then, red color emission layer was deposited using Alq3 as a host material and Rubrene (5,6,11,12- tetraphenylnaphthacene) and GDI 4234 as dopants. Finally, small molecular weight OLED with the structure of ITO/2-TNATA/ NPB/Alq3+Rubrene+GDI4234/Alq3/LiF/Al was obtained by in-situ deposition of Alq3, LiF and Al as electron transport material, electron injection material and cathode. respectively. Green OLED fabricated in our experiments showed the color coordinate of CIE(0.65,0.35) and the maximum luminescence efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.

  • PDF

Salen-Aluminum Complexes as Host Materials for Red Phosphorescent Organic Light-Emitting Diodes

  • Bae, Hye-Jin;Hwang, Kyu-Young;Lee, Min-Hyung;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3290-3294
    • /
    • 2011
  • The properties of monomeric and dimeric salen-aluminum complexes, [salen(3,5-$^tBu)_2$Al(OR)], R = $OC_6H_4-p-C_6H_6$ (H1) and R = [salen(3,5-$^tBu$)AlOPh]C$(CH_3)_2$ (H2) (salen = N,N'-bis-(salicylidene)-ethylenediamine) as host layer materials in red phosphorescent organic light-emitting diodes (PhOLEDs) were investigated. H1 and H2 exhibit high thermal stability with decomposition temperature of 330 and $370^{\circ}C$. DSC analyses showed that the complexes form amorphous glasses upon cooling of melt samples with glass transition temperatures of 112 and $172^{\circ}C$. The HOMO (ca. -5.2~-5.3 eV) and LUMO (ca. -2.3~-2.4 eV) levels with a triplet energy of ca. 1.92 eV suggest that H1 and H2 are suitable for a host material for red emitters. The PhOLED devices based on H1 and H2 doped with a red emitter, $Ir(btp)_2$(acac) (btp = bis(2-(2'-benzothienyl)-pyridinato-N,$C^3$; acac = acetylacetonate) were fabricated by vacuum-deposition and solution process, respectively. The device based on vacuum-deposited H1 host displays high device performances in terms of brightness, luminous and quantum efficiencies comparable to those of the device based on a CBP (4,4'-bis(Ncarbazolyl) biphenyl) host while the solution-processed device with H2 host shows poor performance.